SOLUTION STRUCTURE OF THE SECOND RNA-BINDING DOMAIN OF HU2AF65SOLUTION STRUCTURE OF THE SECOND RNA-BINDING DOMAIN OF HU2AF65

Structural highlights

2u2f is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN

Function

U2AF2_HUMAN Necessary for the splicing of pre-mRNA. Induces cardiac troponin-T (TNNT2) pre-mRNA exon inclusion in muscle. Regulates the TNNT2 exon 5 inclusion through competition with MBNL1. Binds preferentially to a single-stranded structure within the polypyrimidine tract of TNNT2 intron 4 during spliceosome assembly. Required for the export of mRNA out of the nucleus, even if the mRNA is encoded by an intron-less gene. Represses the splicing of MAPT/Tau exon 10.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The large subunit of the human U2 small nuclear ribonucleoprotein particle auxiliary factor (hU2AF(65)) is an essential RNA-splicing factor required for the recognition of the polypyrimidine tract immediately upstream of the 3' splice site. In the present study, we determined the solution structures of two hU2AF(65) fragments, corresponding to the first and second RNA-binding domains (RBD1 and RBD2, respectively), by nuclear magnetic resonance spectroscopy. The tertiary structure of RBD2 is similar to that of typical RNA-binding domains with the beta1-alpha1-beta2-beta3-alpha2-beta4 topology. In contrast, the hU2AF(65) RBD1 structure has unique features: (i) the alpha1 helix is elongated by one turn toward the C-terminus; (ii) the loop between alpha1 and beta2 (the alpha1/beta2 loop) is much longer and has a defined conformation; (iii) the beta2 strand is (188)AVQIN(192), which was not predicted by sequence alignments; and (iv) the beta2/beta3 loop is much shorter. Chemical shift perturbation experiments showed that the U2AF-binding RNA fragments interact with the four beta-strands of RBD2 whereas, in contrast, they interact with beta1, beta3 and beta4, but not with beta2 or the alpha1/beta2 loop, of RBD1. The characteristic alpha1-beta2 structure of the hU2AF(65) RBD1 may interact with other proteins, such as UAP56.

Solution structures of the first and second RNA-binding domains of human U2 small nuclear ribonucleoprotein particle auxiliary factor (U2AF(65)).,Ito T, Muto Y, Green MR, Yokoyama S EMBO J. 1999 Aug 16;18(16):4523-34. PMID:10449418[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Wang J, Gao QS, Wang Y, Lafyatis R, Stamm S, Andreadis A. Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J Neurochem. 2004 Mar;88(5):1078-90. PMID:15009664
  2. Warf MB, Diegel JV, von Hippel PH, Berglund JA. The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9203-8. doi:, 10.1073/pnas.0900342106. Epub 2009 May 26. PMID:19470458 doi:10.1073/pnas.0900342106
  3. Webby CJ, Wolf A, Gromak N, Dreger M, Kramer H, Kessler B, Nielsen ML, Schmitz C, Butler DS, Yates JR 3rd, Delahunty CM, Hahn P, Lengeling A, Mann M, Proudfoot NJ, Schofield CJ, Bottger A. Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing. Science. 2009 Jul 3;325(5936):90-3. PMID:19574390 doi:325/5936/90
  4. Ito T, Muto Y, Green MR, Yokoyama S. Solution structures of the first and second RNA-binding domains of human U2 small nuclear ribonucleoprotein particle auxiliary factor (U2AF(65)). EMBO J. 1999 Aug 16;18(16):4523-34. PMID:10449418 doi:10.1093/emboj/18.16.4523
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA