JMJD2A hybrid tudor domainsJMJD2A hybrid tudor domains

Structural highlights

2qqr is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KDM4A_HUMAN Histone demethylase that specifically demethylates 'Lys-9' and 'Lys-36' residues of histone H3, thereby playing a central role in histone code. Does not demethylate histone H3 'Lys-4', H3 'Lys-27' nor H4 'Lys-20'. Demethylates trimethylated H3 'Lys-9' and H3 'Lys-36' residue, while it has no activity on mono- and dimethylated residues. Demethylation of Lys residue generates formaldehyde and succinate. Participates in transcriptional repression of ASCL2 and E2F-responsive promoters via the recruitment of histone deacetylases and NCOR1, respectively.[1] [2] [3] Isoform 2: Crucial for muscle differentiation, promotes transcriptional activation of the Myog gene by directing the removal of repressive chromatin marks at its promoter. Lacks the N-terminal demethylase domain.[4] [5] [6]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The lysine demethylase JMJD2A has the unique property of binding trimethylated peptides from two different histone sequences (H3K4me3 and H4K20me3) through its tudor domains. Here we show using X-ray crystallography and calorimetry that H3K4me3 and H4K20me3, which are recognized with similar affinities by JMJD2A, adopt radically different binding modes, to the extent that we were able to design single point mutations in JMJD2A that inhibited the recognition of H3K4me3 but not H4K20me3 and vice versa.

Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor.,Lee J, Thompson JR, Botuyan MV, Mer G Nat Struct Mol Biol. 2008 Jan;15(1):109-11. Epub 2007 Dec 16. PMID:18084306[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Zhang D, Yoon HG, Wong J. JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol. 2005 Aug;25(15):6404-14. PMID:16024779 doi:http://dx.doi.org/25/15/6404
  2. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006 May 5;125(3):467-81. Epub 2006 Apr 6. PMID:16603238 doi:10.1016/j.cell.2006.03.028
  3. Verrier L, Escaffit F, Chailleux C, Trouche D, Vandromme M. A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation. PLoS Genet. 2011 Jun;7(6):e1001390. doi: 10.1371/journal.pgen.1001390. Epub 2011 , Jun 2. PMID:21694756 doi:http://dx.doi.org/10.1371/journal.pgen.1001390
  4. Zhang D, Yoon HG, Wong J. JMJD2A is a novel N-CoR-interacting protein and is involved in repression of the human transcription factor achaete scute-like homologue 2 (ASCL2/Hash2). Mol Cell Biol. 2005 Aug;25(15):6404-14. PMID:16024779 doi:http://dx.doi.org/25/15/6404
  5. Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006 May 5;125(3):467-81. Epub 2006 Apr 6. PMID:16603238 doi:10.1016/j.cell.2006.03.028
  6. Verrier L, Escaffit F, Chailleux C, Trouche D, Vandromme M. A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation. PLoS Genet. 2011 Jun;7(6):e1001390. doi: 10.1371/journal.pgen.1001390. Epub 2011 , Jun 2. PMID:21694756 doi:http://dx.doi.org/10.1371/journal.pgen.1001390
  7. Lee J, Thompson JR, Botuyan MV, Mer G. Distinct binding modes specify the recognition of methylated histones H3K4 and H4K20 by JMJD2A-tudor. Nat Struct Mol Biol. 2008 Jan;15(1):109-11. Epub 2007 Dec 16. PMID:18084306 doi:http://dx.doi.org/10.1038/nsmb1326

2qqr, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA