2qoa
Crystal structure of the complex of hcaii with an indane-sulfonamide inhibitorCrystal structure of the complex of hcaii with an indane-sulfonamide inhibitor
Structural highlights
DiseaseCAH2_HUMAN Defects in CA2 are the cause of osteopetrosis autosomal recessive type 3 (OPTB3) [MIM:259730; also known as osteopetrosis with renal tubular acidosis, carbonic anhydrase II deficiency syndrome, Guibaud-Vainsel syndrome or marble brain disease. Osteopetrosis is a rare genetic disease characterized by abnormally dense bone, due to defective resorption of immature bone. The disorder occurs in two forms: a severe autosomal recessive form occurring in utero, infancy, or childhood, and a benign autosomal dominant form occurring in adolescence or adulthood. Autosomal recessive osteopetrosis is usually associated with normal or elevated amount of non-functional osteoclasts. OPTB3 is associated with renal tubular acidosis, cerebral calcification (marble brain disease) and in some cases with mental retardation.[1] [2] [3] [4] [5] FunctionCAH2_HUMAN Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye.[6] [7] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIndanesulfonamides are interesting lead compounds for designing selective inhibitors of the different isoforms of the zinc enzyme Carbonic Anhydrase (CA). Herein, we report for the first time the X-ray crystal structure of two such derivatives, namely indane-5-sulfonamide and indane-2-valproylamido-5-sulfonamide, in complex with the physiologically dominant human isoform II. The structural analysis reveals that, although these two inhibitors have quite similar chemical structures, the arrangement of their indane ring within the enzyme active site is significantly diverse. Thus, our findings suggest that the introduction of bulky substituents on the indane-sulfonamide ring may alter the binding mode of this potent class of CA inhibitors, although retaining good inhibitory properties. Accordingly, the introduction of bulky tail moieties on the indane-sulfonamide scaffold may represent a powerful strategy to induce a desired physicochemical property to an aromatic sulfonamide or to obtain inhibitors with diverse inhibition profiles and selectivity for various mammalian CAs. Carbonic Anhydrase Inhibitors: Binding of Indanesulfonamides to the Human Isoform II.,D'Ambrosio K, Masereel B, Thiry A, Scozzafava A, Supuran CT, De Simone G ChemMedChem. 2007 Dec 27;. PMID:18161740[8] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|