Crystal structure of a cell-wall invertase (E203Q) from Arabidopsis thaliana in complex with sucroseCrystal structure of a cell-wall invertase (E203Q) from Arabidopsis thaliana in complex with sucrose

Structural highlights

2oxb is a 1 chain structure with sequence from Arabidopsis thaliana. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

INV1_ARATH Beta-fructofuranosidase that can use sucrose and 1-kestose, and, to a lower extent, neokestose and levan, as substrates, but not inuline.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In the present study, we report on the X-ray crystallographic structure of a GH32 invertase mutant, (i.e., the Arabidopsis thaliana cell-wall invertase 1-E203Q, AtcwINV1-mutant) in complex with sucrose. This structure was solved to reveal the features of sugar binding in the catalytic pocket. However, as demonstrated by the X-ray structure the sugar binding and the catalytic pocket arrangement is significantly altered as compared with what was expected based on previous X-ray structures on GH-J clan enzymes. We performed a series of docking and molecular dynamics simulations on various derivatives of AtcwINV1 to reveal the reasons behind this modified sugar binding. Our results demonstrate that the E203Q mutation introduced into the catalytic pocket triggers conformational changes that alter the wild type substrate binding. In addition, this study also reveals the putative productive sucrose binding modus in the wild type enzyme. Proteins 2007. (c) 2007 Wiley-Liss, Inc.

An alternate sucrose binding mode in the E203Q Arabidopsis invertase mutant: An X-ray crystallography and docking study.,Matrai J, Lammens W, Jonckheer A, Le Roy K, Rabijns A, Van den Ende W, De Maeyer M Proteins. 2007 Oct 26;. PMID:17963237[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Matrai J, Lammens W, Jonckheer A, Le Roy K, Rabijns A, Van den Ende W, De Maeyer M. An alternate sucrose binding mode in the E203Q Arabidopsis invertase mutant: An X-ray crystallography and docking study. Proteins. 2007 Oct 26;. PMID:17963237 doi:10.1002/prot.21700
  2. Le Roy K, Lammens W, Verhaest M, De Coninck B, Rabijns A, Van Laere A, Van den Ende W. Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase1 into a fructan 1-exohydrolase. Plant Physiol. 2007 Nov;145(3):616-25. Epub 2007 Sep 14. PMID:17873089 doi:pp.107.105049
  3. Matrai J, Lammens W, Jonckheer A, Le Roy K, Rabijns A, Van den Ende W, De Maeyer M. An alternate sucrose binding mode in the E203Q Arabidopsis invertase mutant: An X-ray crystallography and docking study. Proteins. 2007 Oct 26;. PMID:17963237 doi:10.1002/prot.21700

2oxb, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA