Sir2-p53 peptide-NAD+Sir2-p53 peptide-NAD+

Structural highlights

2h4f is a 2 chain structure with sequence from Homo sapiens and Thermotoga maritima. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NPD_THEMA NAD-dependent protein deacetylase which modulates the activities of several enzymes which are inactive in their acetylated form. Has also depropionylation activity in vitro. Also able to ADP-ribosylate peptide substrates with Arg or Lys in the +2 position. The role of this function in vivo is not clear.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Sirtuin proteins comprise a unique class of NAD+-dependent protein deacetylases. Although several structures of sirtuins have been determined, the mechanism by which NAD+ cleavage occurs has remained unclear. We report the structures of ternary complexes containing NAD+ and acetylated peptide bound to the bacterial sirtuin Sir2Tm and to a catalytic mutant (Sir2Tm(H116Y)). NAD+ in these structures binds in a conformation different from that seen in previous structures, exposing the alpha face of the nicotinamide ribose to the carbonyl oxygen of the acetyl lysine substrate. The NAD+ conformation is identical in both structures, suggesting that proper coenzyme orientation is not dependent on contacts with the catalytic histidine. We also present the structure of Sir2Tm(H116A) bound to deacteylated peptide and 3'-O-acetyl ADP ribose. Taken together, these structures suggest a mechanism for nicotinamide cleavage in which an invariant phenylalanine plays a central role in promoting formation of the O-alkylamidate reaction intermediate and preventing nicotinamide exchange.

Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.,Hoff KG, Avalos JL, Sens K, Wolberger C Structure. 2006 Aug;14(8):1231-40. PMID:16905097[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Garrity J, Gardner JG, Hawse W, Wolberger C, Escalante-Semerena JC. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J Biol Chem. 2007 Oct 12;282(41):30239-45. Epub 2007 Aug 7. PMID:17684016 doi:10.1074/jbc.M704409200
  2. Hoff KG, Avalos JL, Sens K, Wolberger C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure. 2006 Aug;14(8):1231-40. PMID:16905097 doi:http://dx.doi.org/10.1016/j.str.2006.06.006
  3. Hawse WF, Wolberger C. Structure-based mechanism of ADP-ribosylation by sirtuins. J Biol Chem. 2009 Nov 27;284(48):33654-61. Epub 2009 Sep 30. PMID:19801667 doi:10.1074/jbc.M109.024521
  4. Hoff KG, Avalos JL, Sens K, Wolberger C. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure. 2006 Aug;14(8):1231-40. PMID:16905097 doi:http://dx.doi.org/10.1016/j.str.2006.06.006

2h4f, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA