Structure of Thermoplasma acidophilum aldohexose dehydrogenase (AldT) in ligand-free formStructure of Thermoplasma acidophilum aldohexose dehydrogenase (AldT) in ligand-free form

Structural highlights

2dtd is a 2 chain structure with sequence from Thermoplasma acidophilum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

Q9HK51_THEAC

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The D-aldohexose dehydrogenase from the thermoacidophilic archaea Thermoplasma acidophilum (AldT) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and catalyzes the oxidation of several monosaccharides with a preference for NAD(+) rather than NADP(+) as a cofactor. It has been found that AldT is a unique enzyme that exhibits the highest dehydrogenase activity against D-mannose. Here, we describe the crystal structures of AldT in ligand-free form, in complex with NADH, and in complex with the substrate D-mannose, at 2.1 A, 1.65 A, and 1.6 A resolution, respectively. The AldT subunit forms a typical SDR fold with an unexpectedly long C-terminal tail and assembles into an intertwined tetramer. The D-mannose complex structure reveals that Glu84 interacts with the axial C2 hydroxyl group of the bound D-mannose. Structural comparison with Bacillus megaterium glucose dehydrogenase (BmGlcDH) suggests that the conformation of the glutamate side-chain is crucial for discrimination between D-mannose and its C2 epimer D-glucose, and the conformation of the glutamate side-chain depends on the spatial arrangement of nearby hydrophobic residues that do not directly interact with the substrate. Elucidation of the D-mannose recognition mechanism of AldT further provides structural insights into the unique substrate selectivity of AldT. Finally, we show that the extended C-terminal tail completely shuts the substrate-binding pocket of the neighboring subunit both in the presence and absence of substrate. The elaborate inter-subunit interactions between the C-terminal tail and the entrance of the substrate-binding pocket imply that the tail may play a pivotal role in the enzyme activity.

Structural insights into unique substrate selectivity of Thermoplasma acidophilum D-aldohexose dehydrogenase.,Yasutake Y, Nishiya Y, Tamura N, Tamura T J Mol Biol. 2007 Apr 6;367(4):1034-46. Epub 2007 Jan 16. PMID:17300803[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Yasutake Y, Nishiya Y, Tamura N, Tamura T. Structural insights into unique substrate selectivity of Thermoplasma acidophilum D-aldohexose dehydrogenase. J Mol Biol. 2007 Apr 6;367(4):1034-46. Epub 2007 Jan 16. PMID:17300803 doi:10.1016/j.jmb.2007.01.029

2dtd, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA