Collagenase-3 (MMP-13) complexed to a hydroxamic acid inhibitorCollagenase-3 (MMP-13) complexed to a hydroxamic acid inhibitor

Structural highlights

2d1n is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.37Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

MMP13_HUMAN Defects in MMP13 are the cause of spondyloepimetaphyseal dysplasia Missouri type (SEMD-MO) [MIM:602111. A bone disease characterized by moderate to severe metaphyseal changes, mild epiphyseal involvement, rhizomelic shortening of the lower limbs with bowing of the femora and/or tibiae, coxa vara, genu varum and pear-shaped vertebrae in childhood. Epimetaphyseal changes improve with age.[1] Defects in MMP13 are the cause of metaphyseal anadysplasia type 1 (MANDP1) [MIM:602111. Metaphyseal anadysplasia consists of an abnormal bone development characterized by severe skeletal changes that, in contrast with the progressive course of most other skeletal dysplasias, resolve spontaneously with age. Clinical characteristics are evident from the first months of life and include slight shortness of stature and a mild varus deformity of the legs. Patients attain a normal stature in adolescence and show improvement or complete resolution of varus deformity of the legs and rhizomelic micromelia.[2]

Function

MMP13_HUMAN Degrades collagen type I. Does not act on gelatin or casein. Could have a role in tumoral process.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453 have been solved at 2.01 and 2.37A resolutions, respectively. The results revealed that the binding modes for this inhibitor to MMP-3 and -13 were quite similar. However, subtle comparative differences were observed at the bottom of S1' pockets, which were occupied with the guanidinomethyl moiety of the inhibitor. A remarkable feature of the inhibitor was the deep penetration of its long aliphatic chain into the S1' pocket and exposure of the guanidinomethyl moiety to the solvent.

Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453.,Kohno T, Hochigai H, Yamashita E, Tsukihara T, Kanaoka M Biochem Biophys Res Commun. 2006 May 26;344(1):315-22. Epub 2006 Mar 27. PMID:16603129[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kennedy AM, Inada M, Krane SM, Christie PT, Harding B, Lopez-Otin C, Sanchez LM, Pannett AA, Dearlove A, Hartley C, Byrne MH, Reed AA, Nesbit MA, Whyte MP, Thakker RV. MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type (SEMD(MO). J Clin Invest. 2005 Oct;115(10):2832-42. PMID:16167086 doi:10.1172/JCI22900
  2. Lausch E, Keppler R, Hilbert K, Cormier-Daire V, Nikkel S, Nishimura G, Unger S, Spranger J, Superti-Furga A, Zabel B. Mutations in MMP9 and MMP13 determine the mode of inheritance and the clinical spectrum of metaphyseal anadysplasia. Am J Hum Genet. 2009 Aug;85(2):168-78. doi: 10.1016/j.ajhg.2009.06.014. Epub 2009, Jul 16. PMID:19615667 doi:10.1016/j.ajhg.2009.06.014
  3. Kohno T, Hochigai H, Yamashita E, Tsukihara T, Kanaoka M. Crystal structures of the catalytic domain of human stromelysin-1 (MMP-3) and collagenase-3 (MMP-13) with a hydroxamic acid inhibitor SM-25453. Biochem Biophys Res Commun. 2006 May 26;344(1):315-22. Epub 2006 Mar 27. PMID:16603129 doi:http://dx.doi.org/10.1016/j.bbrc.2006.03.098

2d1n, resolution 2.37Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA