Crystal Structure of PspF(1-275) R168A mutantCrystal Structure of PspF(1-275) R168A mutant

Structural highlights

2bjv is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.7Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PSPF_ECOLI Transcriptional activator for the phage shock protein (psp) operon (pspABCDE) and pspG gene.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.

Structural insights into the activity of enhancer-binding proteins.,Rappas M, Schumacher J, Beuron F, Niwa H, Bordes P, Wigneshweraraj S, Keetch CA, Robinson CV, Buck M, Zhang X Science. 2005 Mar 25;307(5717):1972-5. PMID:15790859[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Jovanovic G, Weiner L, Model P. Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol. 1996 Apr;178(7):1936-45. PMID:8606168
  2. Lloyd LJ, Jones SE, Jovanovic G, Gyaneshwar P, Rolfe MD, Thompson A, Hinton JC, Buck M. Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). J Biol Chem. 2004 Dec 31;279(53):55707-14. Epub 2004 Oct 13. PMID:15485810 doi:10.1074/jbc.M408994200
  3. Joly N, Burrows PC, Engl C, Jovanovic G, Buck M. A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA(+) transcription activator protein PspF for negative regulation. J Mol Biol. 2009 Dec 11;394(4):764-75. doi: 10.1016/j.jmb.2009.09.055. Epub 2009 , Oct 3. PMID:19804784 doi:10.1016/j.jmb.2009.09.055
  4. Rappas M, Schumacher J, Beuron F, Niwa H, Bordes P, Wigneshweraraj S, Keetch CA, Robinson CV, Buck M, Zhang X. Structural insights into the activity of enhancer-binding proteins. Science. 2005 Mar 25;307(5717):1972-5. PMID:15790859 doi:307/5717/1972

2bjv, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA