Structure of the bacterial chromosome segregation protein SojStructure of the bacterial chromosome segregation protein Soj

Structural highlights

2bej is a 1 chain structure with sequence from Thermus thermophilus HB27. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SOJ_THET2 ATPase probably involved in chromosome partitioning. Cooperatively binds dsDNA, forming nucleoprotein filaments in a strictly ATP-dependent fashion. Can also bind ssDNA with lower affinity.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Soj and Spo0J of the Gram-negative hyperthermophile Thermus thermophilus belong to the conserved ParAB family of bacterial proteins implicated in plasmid and chromosome partitioning. Spo0J binds to DNA near the replication origin and localises at the poles following initiation of replication. Soj oscillates in the nucleoid region in an ATP- and Spo0J-dependent fashion. Here, we show that Soj undergoes ATP-dependent dimerisation in solution and forms nucleoprotein filaments with DNA. Crystal structures of Soj in three nucleotide states demonstrate that the empty and ADP-bound states are monomeric, while a hydrolysis-deficient mutant, D44A, is capable of forming a nucleotide 'sandwich' dimer. Soj ATPase activity is stimulated by Spo0J or the N-terminal 20 amino-acid peptide of Spo0J. Our analysis shows that dimerisation and activation involving a peptide containing a Lys/Arg is conserved for Soj, ParA and MinD and their modulators Spo0J, ParB and MinE, respectively. By homology to the nitrogenase iron protein and the GTPases Ffh/FtsY, we suggest that Soj dimerisation and regulation represent a conserved biological switch.

Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch.,Leonard TA, Butler PJ, Lowe J EMBO J. 2005 Jan 26;24(2):270-82. Epub 2005 Jan 6. PMID:15635448[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Leonard TA, Butler PJ, Lowe J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J. 2005 Jan 26;24(2):270-82. Epub 2005 Jan 6. PMID:15635448
  2. Leonard TA, Butler PJ, Lowe J. Bacterial chromosome segregation: structure and DNA binding of the Soj dimer--a conserved biological switch. EMBO J. 2005 Jan 26;24(2):270-82. Epub 2005 Jan 6. PMID:15635448

2bej, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA