CHOLESTEROL ESTERASE FROM BOS TAURUSCHOLESTEROL ESTERASE FROM BOS TAURUS

Structural highlights

2bce is a 1 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CEL_BOVIN Catalyzes fat and vitamin absorption. Acts in concert with pancreatic lipase and colipase for the complete digestion of dietary triglycerides.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structure of pancreatic cholesterol esterase, an enzyme that hydrolyzes a wide variety of dietary lipids, mediates the absorption of cholesterol esters, and is dependent on bile salts for optimal activity, is determined to 1.6 A resolution. A full-length construct, mutated to eliminate two N-linked glycosylation sites (N187Q/N361Q), was expressed in HEK 293 cells. Enzymatic activity assays show that the purified, recombinant, mutant enzyme has activity identical to that of the native, glycosylated enzyme purified from bovine pancreas. The mutant enzyme is monomeric and exhibits improved homogeneity which aided in the growth of well-diffracting crystals. Crystals of the mutant enzyme grew in space group C2, with the following cell dimensions: a = 100.42 A, b = 54.25 A, c = 106.34 A, and beta = 104.12 degrees, with a monomer in the asymmetric unit. The high-resolution crystal structure of bovine pancreatic cholesterol esterase (Rcryst = 21.1%; Rfree = 25.0% to 1.6 A resolution) shows an alpha-beta hydrolase fold with an unusual active site environment around the catalytic triad. The hydrophobic C terminus of the protein is lodged in the active site, diverting the oxyanion hole away from the productive binding site and the catalytic Ser194. The amphipathic, helical lid found in other triglyceride lipases is truncated in the structure of cholesterol esterase and therefore is not a salient feature of activation of this lipase. These two structural features, along with the bile salt-dependent activity of the enzyme, implicate a new mode of lipase activation.

Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation.,Chen JC, Miercke LJ, Krucinski J, Starr JR, Saenz G, Wang X, Spilburg CA, Lange LG, Ellsworth JL, Stroud RM Biochemistry. 1998 Apr 14;37(15):5107-17. PMID:9548741[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Chen JC, Miercke LJ, Krucinski J, Starr JR, Saenz G, Wang X, Spilburg CA, Lange LG, Ellsworth JL, Stroud RM. Structure of bovine pancreatic cholesterol esterase at 1.6 A: novel structural features involved in lipase activation. Biochemistry. 1998 Apr 14;37(15):5107-17. PMID:9548741 doi:10.1021/bi972989g

2bce, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA