1xu4
ATPASE IN COMPLEX WITH AMP-PNP, MAGNESIUM AND POTASSIUM CO-FATPASE IN COMPLEX WITH AMP-PNP, MAGNESIUM AND POTASSIUM CO-F
Structural highlights
FunctionRADA_METVO Involved in DNA repair and in homologous recombination. Binds and assemble on single-stranded DNA to form a nucleoprotein filament. Hydrolyzes ATP in a ssDNA-dependent manner and promotes DNA strand exchange between homologous DNA molecules (By similarity). Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHomologous gene recombination is crucial for the repair of DNA. A superfamily of recombinases facilitate a central strand exchange reaction in the repair process. This reaction is initiated by coating single-stranded DNA (ssDNA) with recombinases in the presence of ATP and Mg(2+) co-factors to form helical nucleoprotein filaments with elevated ATPase and strand invasion activities. At the amino acid sequence level, archaeal RadA and Rad51 and eukaryal Rad51 and meiosis-specific DMC1 form a closely related group of recombinases distinct from bacterial RecA. Unlike the extensively studied Escherichia coli RecA (EcRecA), increasing evidences on yeast and human recombinases imply that their optimal activities are dependent on the presence of a monovalent cation, particularly potassium. Here we present the finding that archaeal RadA from Methanococcus voltae (MvRadA) is a stringent potassium-dependent ATPase, and the crystal structure of this protein in complex with the non-hydrolyzable ATP analog adenosine 5'-(beta,gamma-iminotriphosphate), Mg(2+), and K(+) at 2.4 A resolution. Potassium triggered an in situ conformational change in the ssDNA-binding L2 region concerted with incorporation of two potassium ions at the ATPase site in the RadA crystals preformed in K(+)-free medium. Both potassium ions were observed in contact with the gamma-phosphate of the ATP analog, implying a direct role by the monovalent cations in stimulating the ATPase activity. Cross-talk between the ATPase site and the ssDNA-binding L2 region visualized in the MvRadA structure provides an explanation to the co-factor-induced allosteric effect on RecA-like recombinases. Crystal structure of an ATPase-active form of Rad51 homolog from Methanococcus voltae. Insights into potassium dependence.,Wu Y, Qian X, He Y, Moya IA, Luo Y J Biol Chem. 2005 Jan 7;280(1):722-8. Epub 2004 Nov 10. PMID:15537659[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|