X-ray structure of a putative phosphoprotein phosphatase from Arabidopsis thaliana gene AT1G05000X-ray structure of a putative phosphoprotein phosphatase from Arabidopsis thaliana gene AT1G05000

Structural highlights

1xri is a 2 chain structure with sequence from Arabidopsis thaliana. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN

Function

DSP1_ARATH Possesses phosphotyrosine phosphatase activity in vitro. Hydrolyzes para-nitrophenyl phosphate in vitro (PubMed:21409566, PubMed:18433060). Hydrolyzes O-methylfluorescein phosphate in vitro (PubMed:21409566). Hydrolyzes polyphosphate and ATP in vitro (PubMed:18433060). Dephosphorylates the phosphoinositides PI(3,4,5)P3, PI(3,5)P2, but not PI(3)P, PI(3,4)P2 or PI(4,5)P2 (PubMed:17976645).[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The crystal structure of the protein product of the gene locus At1g05000, a hypothetical protein from A. thaliana, was determined by the multiple-wavelength anomalous diffraction method and was refined to an R factor of 20.4% (R(free) = 24.9%) at 3.3 A. The protein adopts the alpha/beta fold found in cysteine phosphatases, a superfamily of phosphatases that possess a catalytic cysteine and form a covalent thiol-phosphate intermediate during the catalytic cycle. In At1g05000, the analogous cysteine (Cys(150)) is located at the bottom of a positively-charged pocket formed by residues that include the conserved arginine (Arg(156)) of the signature active site motif, HCxxGxxRT. Of 74 model phosphatase substrates tested, purified recombinant At1g05000 showed highest activity toward polyphosphate (poly-P(12-13)) and deoxyribo- and ribonucleoside triphosphates, and less activity toward phosphoenolpyruvate, phosphotyrosine, phosphotyrosine-containing peptides, and phosphatidyl inositols. Divalent metal cations were not required for activity and had little effect on the reaction.

Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000.,Aceti DJ, Bitto E, Yakunin AF, Proudfoot M, Bingman CA, Frederick RO, Sreenath HK, Vojtik FC, Wrobel RL, Fox BG, Markley JL, Phillips GN Jr Proteins. 2008 Oct;73(1):241-53. PMID:18433060[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Roma-Mateo C, Rios P, Tabernero L, Attwood TK, Pulido R. A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity. J Mol Biol. 2007 Dec 7;374(4):899-909. doi: 10.1016/j.jmb.2007.10.008. Epub 2007 , Oct 11. PMID:17976645 doi:http://dx.doi.org/10.1016/j.jmb.2007.10.008
  2. Aceti DJ, Bitto E, Yakunin AF, Proudfoot M, Bingman CA, Frederick RO, Sreenath HK, Vojtik FC, Wrobel RL, Fox BG, Markley JL, Phillips GN Jr. Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000. Proteins. 2008 Oct;73(1):241-53. PMID:18433060 doi:10.1002/prot.22041
  3. Roma-Mateo C, Sacristan-Reviriego A, Beresford NJ, Caparros-Martin JA, Culianez-Macia FA, Martin H, Molina M, Tabernero L, Pulido R. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms. Mol Genet Genomics. 2011 Apr;285(4):341-54. doi: 10.1007/s00438-011-0611-6. Epub , 2011 Mar 16. PMID:21409566 doi:http://dx.doi.org/10.1007/s00438-011-0611-6
  4. Aceti DJ, Bitto E, Yakunin AF, Proudfoot M, Bingman CA, Frederick RO, Sreenath HK, Vojtik FC, Wrobel RL, Fox BG, Markley JL, Phillips GN Jr. Structural and functional characterization of a novel phosphatase from the Arabidopsis thaliana gene locus At1g05000. Proteins. 2008 Oct;73(1):241-53. PMID:18433060 doi:10.1002/prot.22041

1xri, resolution 3.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA