Bacillus subtilis cytidine deaminase with an Arg56 - Ala substitutionBacillus subtilis cytidine deaminase with an Arg56 - Ala substitution

Structural highlights

1uwz is a 2 chain structure with sequence from Bacillus subtilis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.99Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CDD_BACSU This enzyme scavenges exogenous and endogenous cytidine and 2'-deoxycytidine for UMP synthesis.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The zinc-containing cytidine deaminase (CDA, EC 3.5.4.5) is a pyrimidine salvage enzyme catalyzing the hydrolytic deamination of cytidine and 2'-deoxycytidine forming uridine and 2'-deoxyuridine, respectively. Homodimeric CDA (D-CDA) and homotetrameric CDA (T-CDA) both contain one zinc ion per subunit coordinated to the catalytic water molecule. The zinc ligands in D-CDA are one histidine and two cysteine residues, whereas in T-CDA zinc is coordinated to three cysteines. Two of the zinc coordinating cysteines in T-CDA form hydrogen bonds to the conserved residue Arg56, and this residue together with the dipole moments from two alpha-helices partially neutralizes the additional negative charge in the active site, leading to a catalytic activity similar to D-CDA. Arg56 has been substituted by a glutamine (R56Q), the corresponding residue in D-CDA, an alanine (R56A), and an aspartate (R56D). Moreover, one of the zinc-liganding cysteines has been substituted by histidine to mimic D-CDA, alone (C53H) and in combination with R56Q (C53H/R56Q). R56A, R56Q, and C53H/R56Q contain the same amount of zinc as the wild-type enzyme. The zinc-binding capacity of R56D is reduced. Only R56A, R56Q, and C53H/R56Q yielded measurable CDA activity, R56A and R56Q with similar K(m) but decreased V(max) values compared to wild-type enzyme. Because of dissociation into its inactive subunits, it was impossible to determine the kinetic parameters for C53H/R56Q. R56A and C53H/R56Q display increased apparent pK(a) values compared to the wild-type enzyme and R56Q. On the basis of the structures of R56A, R56Q, and C53H/R56Q an explanation is provided of kinetic results and the apparent instability of C53H/R56Q.

Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase.,Johansson E, Neuhard J, Willemoes M, Larsen S Biochemistry. 2004 May 25;43(20):6020-9. PMID:15147186[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Johansson E, Neuhard J, Willemoes M, Larsen S. Structural, kinetic, and mutational studies of the zinc ion environment in tetrameric cytidine deaminase. Biochemistry. 2004 May 25;43(20):6020-9. PMID:15147186 doi:10.1021/bi035893x

1uwz, resolution 1.99Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA