Crystal structure of the equinatoxin II 8-69 double cysteine mutantCrystal structure of the equinatoxin II 8-69 double cysteine mutant

Structural highlights

1tzq is a 1 chain structure with sequence from Actinia equina. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ACTP2_ACTEQ Pore-forming protein that forms cations-selective hydrophilic pores of around 1 nm and causes cardiac stimulation and hemolysis. Pore formation is a multi-step process that involves specific recognition of membrane sphingomyelin (but neither cholesterol nor phosphatidylcholine) using aromatic rich region and adjacent phosphocholine (POC) binding site, firm binding to the membrane (mainly driven by hydrophobic interactions) accompanied by the transfer of the N-terminal region to the lipid-water interface and finally pore formation after oligomerization of several monomers. Cytolytic effects include red blood cells hemolysis, platelet aggregation and lysis, cytotoxic and cytostatic effects on fibroblasts. Lethality in mammals has been ascribed to severe vasospasm of coronary vessels, cardiac arrhythmia, and inotropic effects.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Actinoporins are eukaryotic pore-forming proteins that create 2-nm pores in natural and model lipid membranes by the self-association of four monomers. The regions that undergo conformational change and form part of the transmembrane pore are currently being defined. It was shown recently that the N-terminal region (residues 10-28) of equinatoxin, an actinoporin from Actinia equina, participates in building of the final pore wall. Assuming that the pore is formed solely by a polypeptide chain, other parts of the toxin should constitute the conductive channel and here we searched for these regions by disulfide scanning mutagenesis. Only double cysteine mutants where the N-terminal segment 1-30 was attached to the beta-sandwich exhibited reduced hemolytic activity upon disulfide formation, showing that other parts of equinatoxin, particularly the beta-sandwich and importantly the C-terminal alpha-helix, do not undergo large conformational rearrangements during the pore formation. The role of the beta-sandwich stability was independently assessed via destabilization of a part of its hydrophobic core by mutations of the buried Trp117. These mutants were considerably less stable than the wild-type but exhibited similar or slightly lower permeabilizing activity. Collectively these results show that a flexible N-terminal region and stable beta-sandwich are pre-requisite for proper pore formation by the actinoporin family.

Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich.,Kristan K, Podlesek Z, Hojnik V, Gutierrez-Aguirre I, Guncar G, Turk D, Gonzalez-Manas JM, Lakey JH, Macek P, Anderluh G J Biol Chem. 2004 Nov 5;279(45):46509-17. Epub 2004 Aug 20. PMID:15322132[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kristan K, Podlesek Z, Hojnik V, Gutierrez-Aguirre I, Guncar G, Turk D, Gonzalez-Manas JM, Lakey JH, Macek P, Anderluh G. Pore formation by equinatoxin, a eukaryotic pore-forming toxin, requires a flexible N-terminal region and a stable beta-sandwich. J Biol Chem. 2004 Nov 5;279(45):46509-17. Epub 2004 Aug 20. PMID:15322132 doi:10.1074/jbc.M406193200

1tzq, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA