THIOREDOXIN-2THIOREDOXIN-2

Structural highlights

1thx is a 1 chain structure with sequence from Nostoc sp. PCC 7120 = FACHB-418. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

THIO2_NOSS1 Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Thioredoxins are ubiquitous proteins that serve as reducing agents and general protein disulfide reductases. The structures of thioredoxins from a number of species, including man and Escherichia coli, are known. Cyanobacteria, such as Anabaena, contain two thioredoxins that exhibit very different activities with target enzymes and share little sequence similarity. Thioredoxin-2 (Trx-2) from Anabaena resembles chloroplast type-f thioredoxin in its activities and the two proteins may be evolutionarily related. We have undertaken structural studies of Trx-2 in order to gain insights into the structure/function relationships of thioredoxins. RESULTS: Anabaena Trx-2, like E. coli thioredoxin, consists of a five-stranded beta sheet core surrounded by four alpha helices. The active site includes a conserved disulfide ring (in the sequence 31WCGPC35). An aspartate (E. coli) to tyrosine (Trx-2) substitution alters the position of this disulfide ring relative to the central pleated sheet. However, loss of this conserved aspartate does not affect the disulfide geometry. In the Trx-2 crystals, the N-terminal residues make extensive contacts with a symmetry-related molecule with hydrogen bonds to residues 74-76 mimicking thioredoxin-protein interactions. CONCLUSIONS: The overall three-dimensional structure of Trx-2 is similar to E. coli thioredoxin and other related disulfide oxido-reductases. Single amino acid substitutions around the protein interaction area probably account for the unusual enzymatic activities of Trx-2 and its ability to discriminate between substrate and non-substrate peptides.

Crystal structure of thioredoxin-2 from Anabaena.,Saarinen M, Gleason FK, Eklund H Structure. 1995 Oct 15;3(10):1097-108. PMID:8590004[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Saarinen M, Gleason FK, Eklund H. Crystal structure of thioredoxin-2 from Anabaena. Structure. 1995 Oct 15;3(10):1097-108. PMID:8590004

1thx, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA