1t5c
Crystal structure of the motor domain of human kinetochore protein CENP-ECrystal structure of the motor domain of human kinetochore protein CENP-E
Structural highlights
FunctionCENPE_HUMAN Essential for the maintenance of chromosomal stability through efficient stabilization of microtubule capture at kinetochores. Plays a key role in the movement of chromosomes toward the metaphase plate during mitosis. Is a slow plus end-directed motor whose activity is essential for metaphase chromosome alignment. Couples chromosome position to microtubule depolymerizing activity. The highly processive microtubule-dependent motor activity of CENPE serves to power chromosome congression and provides a flexible, motile tether linking kinetochores to dynamic spindle microtubules. Necessary for the mitotic checkpoint signal at individual kinetochores to prevent aneuploidy due to single chromosome loss. Required for the efficient recruitment of BUBR1, MAD1 and MAD2 to attached and newly unattached kinetochores. Stimulates mammalian BUBR1 kinase activity. Accumulates just before mitosis at the G2 phase of the cell cycle.[1] [2] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe human kinetochore is a highly complex macromolecular structure that connects chromosomes to spindle microtubules (MTs) in order to facilitate accurate chromosome segregation. Centromere-associated protein E (CENP-E), a member of the kinesin superfamily, is an essential component of the kinetochore, since it is required to stabilize the attachment of chromosomes to spindle MTs, to develop tension across aligned chromosomes, to stabilize spindle poles and to satisfy the mitotic checkpoint. Here we report the 2.5A resolution crystal structure of the motor domain and linker region of human CENP-E with MgADP bound in the active site. This structure displays subtle but important differences compared to the structures of human Eg5 and conventional kinesin. Our structure reveals that the CENP-E linker region is in a "docked" position identical to that in the human plus-end directed conventional kinesin. CENP-E has many advantages as a potential anti-mitotic drug target and this crystal structure of human CENP-E will provide a starting point for high throughput virtual screening of potential inhibitors. Crystal structure of the motor domain of the human kinetochore protein CENP-E.,Garcia-Saez I, Yen T, Wade RH, Kozielski F J Mol Biol. 2004 Jul 23;340(5):1107-16. PMID:15236970[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|