Crystal Structure of a Soluble Domain of ResA in the Oxidised FormCrystal Structure of a Soluble Domain of ResA in the Oxidised Form

Structural highlights

1st9 is a 2 chain structure with sequence from Bacillus subtilis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RESA_BACSU Thiol-disulfide oxidoreductase which is required in disulfide reduction during c-type cytochrome synthesis. May accept reducing equivalents from CcdA, leading to breakage of disulfide bonds in apocytochrome c; following this reduction heme can be covalently attached. Does not play a role in sporulation.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Post-translational maturation of cytochromes c involves the covalent attachment of heme to the Cys-Xxx-Xxx-Cys-His motif of the apo-cytochrome. For this process, the two cysteines of the motif must be in the reduced state. In bacteria, this is achieved by dedicated, membrane-bound thiol-disulfide oxidoreductases with a high reducing power, which are essential components of cytochrome c maturation systems and are also linked to cellular disulfide-bond formation machineries. Here we report high-resolution structures of oxidized and reduced states of a soluble, functional domain of one such oxidoreductase, ResA, from Bacillus subtilis. The structures elucidate the structural basis of the protein's high reducing power and reveal the largest redox-coupled conformational changes observed to date in any thioredoxin-like protein. These redox-coupled changes alter the protein surface and illustrate how the redox state of ResA predetermines to which substrate it binds. Furthermore, a polar cavity, present only in the reduced state, may confer specificity to recognize apo-cytochrome c. The described features of ResA are likely to be general for bacterial cytochrome c maturation systems.

Structural basis of Redox-coupled protein substrate selection by the cytochrome c biosynthesis protein ResA.,Crow A, Acheson RM, Le Brun NE, Oubrie A J Biol Chem. 2004 May 28;279(22):23654-60. Epub 2004 Mar 26. PMID:15047692[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Erlendsson LS, Acheson RM, Hederstedt L, Le Brun NE. Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis. J Biol Chem. 2003 May 16;278(20):17852-8. Epub 2003 Mar 7. PMID:12637552 doi:http://dx.doi.org/10.1074/jbc.M300103200
  2. Crow A, Acheson RM, Le Brun NE, Oubrie A. Structural basis of Redox-coupled protein substrate selection by the cytochrome c biosynthesis protein ResA. J Biol Chem. 2004 May 28;279(22):23654-60. Epub 2004 Mar 26. PMID:15047692 doi:10.1074/jbc.M402823200

1st9, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA