Crystal Structure of Kv4.3 T1 DomainCrystal Structure of Kv4.3 T1 Domain

Structural highlights

1s1g is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

KCND3_HUMAN Note=KCND3 rare variants may confer risk for lethal ventricular arrhytmias and be associated with autopsy-negative sudden unexplained death syndrome (SUDS).[1]

Function

KCND3_HUMAN Pore-forming (alpha) subunit of voltage-gated rapidly inactivating A-type potassium channels. May contribute to I(To) current in heart and I(Sa) current in neurons. Channel properties are modulated by interactions with other alpha subunits and with regulatory subunits.[2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The family of calcium binding proteins called KChIPs associates with Kv4 family K(+) channels and modulates their biophysical properties. Here, using mutagenesis and X-ray crystallography, we explore the interaction between Kv4 subunits and KChIP1. Two regions in the Kv4.2 N terminus, residues 7-11 and 71-90, are necessary for KChIP1 modulation and interaction with Kv4.2. When inserted into the Kv1.2 N terminus, residues 71-90 of Kv4.2 are also sufficient to confer association with KChIP1. To provide a structural framework for these data, we solved the crystal structures of Kv4.3N and KChIP1 individually. Taken together with the mutagenesis data, the individual structures suggest that that the Kv4 N terminus is required for stable association with KChIP1, perhaps through a hydrophobic surface interaction, and that residues 71-90 in Kv4 subunits form a contact loop that mediates the specific association of KChIPs with Kv4 subunits.

Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1.,Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lu Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ Neuron. 2004 Feb 19;41(4):587-98. PMID:14980207[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Giudicessi JR, Ye D, Kritzberger CJ, Nesterenko VV, Tester DJ, Antzelevitch C, Ackerman MJ. Novel mutations in the KCND3-encoded Kv4.3 K+ channel associated with autopsy-negative sudden unexplained death. Hum Mutat. 2012 Jun;33(6):989-97. doi: 10.1002/humu.22058. Epub 2012 Mar 27. PMID:22457051 doi:10.1002/humu.22058
  2. Kong W, Po S, Yamagishi T, Ashen MD, Stetten G, Tomaselli GF. Isolation and characterization of the human gene encoding Ito: further diversity by alternative mRNA splicing. Am J Physiol. 1998 Dec;275(6 Pt 2):H1963-70. PMID:9843794
  3. Dilks D, Ling HP, Cockett M, Sokol P, Numann R. Cloning and expression of the human kv4.3 potassium channel. J Neurophysiol. 1999 Apr;81(4):1974-7. PMID:10200233
  4. Scannevin RH, Wang K, Jow F, Megules J, Kopsco DC, Edris W, Carroll KC, Lu Q, Xu W, Xu Z, Katz AH, Olland S, Lin L, Taylor M, Stahl M, Malakian K, Somers W, Mosyak L, Bowlby MR, Chanda P, Rhodes KJ. Two N-terminal domains of Kv4 K(+) channels regulate binding to and modulation by KChIP1. Neuron. 2004 Feb 19;41(4):587-98. PMID:14980207

1s1g, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA