HUMAN LYSOZYME WITH MAN-B1,4-GLCNAC COVALENTLY ATTACHED TO ASP53HUMAN LYSOZYME WITH MAN-B1,4-GLCNAC COVALENTLY ATTACHED TO ASP53

Structural highlights

1rem is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

LYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]

Function

LYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Human lysozyme (HL) labelled with the 2',3'-epoxypropyl beta-glycoside of Man-beta1,4-GlcNAc was crystallized at pH 4.5. The cell dimensions were a = 36.39, b = 116.38, c = 30.91 A and the space group was P212121. The unit cell contained four molecules (Vm = 2.18 A3 Da-1). The crystal structure was determined by molecular replacement and refined to an R value of 0.168 for 7060 reflections [|Fo| > 3sigma(F)] in the resolution range 8.0-2.1 A. A prominent shift of the Calpha-atom positions by up to 3.8 A in the region of residues 45-50 was observed compared with wild-type HL. Owing to the conformational change in this region the intermolecular contacts were altered remarkably compared to wild-type HL, explaining the difference in molecular packing. The Man-beta1,4-GlcNAc moiety occupied subsites B and C in the substrate-binding site of HL. Several differences in the hydrogen-bonded contacts between the ligand part and the protein part were observed for HL labelled with the 2',3'-epoxypropyl beta-glycoside of Man-beta1,4-GlcNAc compared with HL labelled with the corresponding derivatives of GlcNAc-beta1, 4-GlcNAc and Gal-beta1,4-GlcNAc. In contrast to the replacement of GlcNAc with Gal, the replacement of GlcNAc with Man did not sacrifice the stacking interactions with the side-chain group of Tyr63 as determined by the parallelism of the apolar face of the carbohydrate residue and the aromatic plane of the Tyr63 side chain. The 2',3'-epoxypropyl beta-glycoside of Man-beta1,4-GlcNAc exhibited almost the same affinity towards HL as Gal-beta1,4-GlcNAc, a much lower affinity than that of GlcNAc-beta1,4-GlcNAc. The difference in the protein-ligand interactions was discussed in relation to the carbo-hydrate-residue recognition specificity at subsite B of HL. The results suggested that Gln104 was a determinant for the strong recognition of GlcNAc residue at subsite B in HL.

X-ray structure of human lysozyme labelled with 2',3'-epoxypropyl beta-glycoside of man-beta1,4-GlcNAc. Structural change and recognition specificity at subsite B.,Muraki M, Harata K, Sugita N, Sato K Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):834-43. PMID:9757098[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
  2. Muraki M, Harata K, Sugita N, Sato K. X-ray structure of human lysozyme labelled with 2',3'-epoxypropyl beta-glycoside of man-beta1,4-GlcNAc. Structural change and recognition specificity at subsite B. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):834-43. PMID:9757098

1rem, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA