Structure of Deinococcus radiodurans N-acylamino acid racemase at 1.3 : insights into a flexible binding pocket and evolution of enzymatic activityStructure of Deinococcus radiodurans N-acylamino acid racemase at 1.3 : insights into a flexible binding pocket and evolution of enzymatic activity

Structural highlights

1r0m is a 4 chain structure with sequence from Deinococcus radiodurans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

NSAR_DEIRA Acts as a N-succinylamino acid racemase (NSAR) that catalyzes the racemization of N-succinyl-L-phenylglycine and N-succinyl-D/L-phenylalanine (PubMed:24872444, PubMed:25875730). Can catalyze the racemization of a broad range of N-acylamino acids, including N-acetyl-D/L-methionine, N-acetyl-D/L-phenylalanine, N-acetyl-L-glutamine, N-acetyl-L-tryptophan, N-acetyl-L-leucine, N-formyl-D-methionine, N-formyl-D-norleucine, N-carbamoyl-D-methionine and N-carbamoyl-D-norleucine (PubMed:15313614, PubMed:16650857, PubMed:25875730). Also converts 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate (SHCHC) to 2-succinylbenzoate (OSB) (PubMed:24872444). Catalyzes both N-succinylamino acid racemization and OSB synthesis at equivalent rates (PubMed:24872444). However, NSAR activity is probably the protein's biological function, because menaquinone biosynthesis genes are missing in this species (Probable).[1] [2] [3] [4] [5]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

References

  1. Wang WC, Chiu WC, Hsu SK, Wu CL, Chen CY, Liu JS, Hsu WH. Structural basis for catalytic racemization and substrate specificity of an N-acylamino acid racemase homologue from Deinococcus radiodurans. J Mol Biol. 2004 Sep 3;342(1):155-69. PMID:15313614 doi:http://dx.doi.org/10.1016/j.jmb.2004.07.023
  2. Chiu WC, You JY, Liu JS, Hsu SK, Hsu WH, Shih CH, Hwang JK, Wang WC. Structure-stability-activity relationship in covalently cross-linked N-carbamoyl D-amino acid amidohydrolase and N-acylamino acid racemase. J Mol Biol. 2006 Jun 9;359(3):741-53. Epub 2006 Apr 18. PMID:16650857 doi:http://dx.doi.org/10.1016/j.jmb.2006.03.063
  3. Odokonyero D, Sakai A, Patskovsky Y, Malashkevich VN, Fedorov AA, Bonanno JB, Fedorov EV, Toro R, Agarwal R, Wang C, Ozerova ND, Yew WS, Sauder JM, Swaminathan S, Burley SK, Almo SC, Glasner ME. Loss of quaternary structure is associated with rapid sequence divergence in the OSBS family. Proc Natl Acad Sci U S A. 2014 May 28. pii: 201318703. PMID:24872444 doi:http://dx.doi.org/10.1073/pnas.1318703111
  4. Soriano-Maldonado P, Andújar-Sánchez M, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ, Martínez-Rodríguez S. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49. Mol Biotechnol. 2015 May;57(5):454-65. PMID:25875730 doi:10.1007/s12033-015-9839-4
  5. Glasner ME, Fayazmanesh N, Chiang RA, Sakai A, Jacobson MP, Gerlt JA, Babbitt PC. Evolution of structure and function in the o-succinylbenzoate synthase/N-acylamino acid racemase family of the enolase superfamily. J Mol Biol. 2006 Jun 30;360(1):228-50. PMID:16740275 doi:10.1016/j.jmb.2006.04.055

1r0m, resolution 1.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA