E. COLI FERRIC HYDROXAMATE UPTAKE RECEPTOR (FHUA) IN COMPLEX WITH BOUND FERRICHROME-IRONE. COLI FERRIC HYDROXAMATE UPTAKE RECEPTOR (FHUA) IN COMPLEX WITH BOUND FERRICHROME-IRON

Structural highlights

1qff is a 1 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:, , , , , , , , , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FHUA_ECOLI This receptor binds the ferrichrome-iron ligand. It interacts with the TonB protein, which is responsible for energy coupling of the ferrichrome-promoted iron transport system. Acts as a receptor for bacteriophage T5 as well as T1, phi80 and colicin M. Binding of T5 triggers the opening of a high conductance ion channel. Can also transport the antibiotic albomycin.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Lipopolysaccharide (LPS), a lipoglycan from the outer membrane of Gram-negative bacteria, is an immunomodulatory molecule that stimulates the innate immune response. High levels of LPS cause excessive release of inflammatory mediators and are responsible for the septic shock syndrome. The interaction of LPS with its cognate binding proteins has not, as yet, been structurally elucidated. RESULTS: The X-ray crystallographic structure of LPS in complex with the integral outer membrane protein FhuA from Escherichia coli K-12 is reported. It is in accord with data obtained using mass spectroscopy and nuclear magnetic resonance. Most of the important hydrogen-bonding or electrostatic interactions with LPS are provided by eight positively charged residues of FhuA. Residues in a similar three-dimensional arrangement were searched for in all structurally known proteins using a fast template-matching algorithm, and a subset of four residues was identified that is common to known LPS-binding proteins. CONCLUSIONS: These four residues, three of which form specific interactions with lipid A, appear to provide the structural basis of pattern recognition in the innate immune response. Their arrangement can serve to identify LPS-binding sites on proteins known to interact with LPS, and could serve as a template for molecular modeling of a LPS scavenger designed to reduce the septic shock syndrome.

A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins.,Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, Diederichs K Structure. 2000 Jun 15;8(6):585-92. PMID:10873859[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bonhivers M, Ghazi A, Boulanger P, Letellier L. FhuA, a transporter of the Escherichia coli outer membrane, is converted into a channel upon binding of bacteriophage T5. EMBO J. 1996 Apr 15;15(8):1850-6. PMID:8617231
  2. Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, Diederichs K. A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. Structure. 2000 Jun 15;8(6):585-92. PMID:10873859

1qff, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA