1oua
CONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE I56T MUTANTCONTRIBUTION OF HYDROPHOBIC RESIDUES TO THE STABILITY OF HUMAN LYSOZYME: X-RAY STRUCTURE OF THE I56T MUTANT
Structural highlights
DiseaseLYSC_HUMAN Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1] FunctionLYSC_HUMAN Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe physicochemical properties of an amyloidogenic mutant human lysozyme (Ile56Thr) were examined in order to elucidate the mechanism of amyloid formation. The crystal structure of the mutant protein was the same as the wild-type structure, except that the hydroxyl group of the introduced Thr56 formed a hydrogen bond with a water molecule in the interior of the protein. The other physicochemical properties of the mutant protein in the native state were not different from those of the wild-type protein. However, the equilibrium and kinetic stabilities of the mutant protein were remarkably decreased due to the introduction of a polar residue (Thr) in the interior of the molecule. It can be concluded that the amyloid formation of the mutant human lysozyme is due to a tendency to favor (partly or/and completely) denatured structures. The structure, stability, and folding process of amyloidogenic mutant human lysozyme.,Funahashi J, Takano K, Ogasahara K, Yamagata Y, Yutani K J Biochem. 1996 Dec;120(6):1216-23. PMID:9010773[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|