A Conserved protein binding-site on Bacterial Sliding ClampsA Conserved protein binding-site on Bacterial Sliding Clamps

Structural highlights

1ok7 is a 3 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.65Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DPO4_ECOLI Poorly processive, error-prone DNA polymerase involved in untargeted mutagenesis. Copies undamaged DNA at stalled replication forks, which arise in vivo from mismatched or misaligned primer ends. These misaligned primers can be extended by PolIV. Exhibits no 3'-5' exonuclease (proofreading) activity. Overexpression of polIV results in increased frameshift mutagenesis. It is required for stationary-phase adaptive mutation, which provides the bacterium with flexibility in dealing with environmental stress, enhancing long-term survival and evolutionary fitness. May be involved in translesional synthesis, in conjunction with the beta clamp from PolIII.[1] [2] [3] [4] [5]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Most DNA polymerases interact with their cognate processive replication factor through a small peptide, this interaction being absolutely required for their function in vivo. We have solved the crystal structure of a complex between the beta sliding clamp of Escherichia coli and the 16 residue C-terminal peptide of Pol IV (P16). The seven C-terminal residues bind to a pocket located at the surface of one beta monomer. This region was previously identified as the binding site of another beta clamp binding protein, the delta subunit of the gamma complex. We show that peptide P16 competitively prevents beta-clamp-mediated stimulation of both Pol IV and alpha subunit DNA polymerase activities, suggesting that the site of interaction of the alpha subunit with beta is identical with, or overlaps that of Pol IV. This common binding site for delta, Pol IV and alpha subunit is shown to be formed by residues that are highly conserved among many bacterial beta homologs, thus defining an evolutionarily conserved hydrophobic crevice for sliding clamp ligands and a new target for antibiotic drug design.

Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases.,Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P J Mol Biol. 2004 Jan 30;335(5):1187-97. PMID:14729336[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kim SR, Maenhaut-Michel G, Yamada M, Yamamoto Y, Matsui K, Sofuni T, Nohmi T, Ohmori H. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13792-7. PMID:9391106
  2. Napolitano R, Janel-Bintz R, Wagner J, Fuchs RP. All three SOS-inducible DNA polymerases (Pol II, Pol IV and Pol V) are involved in induced mutagenesis. EMBO J. 2000 Nov 15;19(22):6259-65. PMID:11080171 doi:10.1093/emboj/19.22.6259
  3. McKenzie GJ, Lee PL, Lombardo MJ, Hastings PJ, Rosenberg SM. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification. Mol Cell. 2001 Mar;7(3):571-9. PMID:11463382
  4. Lenne-Samuel N, Wagner J, Etienne H, Fuchs RP. The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. EMBO Rep. 2002 Jan;3(1):45-9. Epub 2001 Dec 19. PMID:11751576 doi:10.1093/embo-reports/kvf007
  5. Yeiser B, Pepper ED, Goodman MF, Finkel SE. SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8737-41. Epub 2002 Jun 11. PMID:12060704 doi:10.1073/pnas.092269199
  6. Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P. Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J Mol Biol. 2004 Jan 30;335(5):1187-97. PMID:14729336

1ok7, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA