Crystal structure of the alkylsulfatase AtsK, a non-heme Fe(II) alphaketoglutarate dependent Dioxygenase in complex with iron and alphaketoglutarateCrystal structure of the alkylsulfatase AtsK, a non-heme Fe(II) alphaketoglutarate dependent Dioxygenase in complex with iron and alphaketoglutarate

Structural highlights

1oii is a 4 chain structure with sequence from Pseudomonas putida. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.19Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ATSK_PSEPU Catalyzes the oxigenolytic cleavage of 2-ethylhexyl sulfate (2-EHS) in the presence of alpha-ketoglutarate to yield 2-ethyl-hexanal and succinate, the decarboxylated form of alpha-ketoglutarate. It can accepte a wide range of alpha-keto acids including 2-oxo-valerate, 2-oxo-adipate, 2-oxo-octanoate, 3-methyl-2-oxo-butyrate, oxaloacetate-alpha-ketoadipate, and alpha-ketooctanoate. It can catalyze the cleavage of medium-chain alkyl sulfate esters such as butylsulfate, pentylsulfate, hexylsulfate, heptylsulfate, octylsulfate, nonylsulfate, decylsulfate and sodium dodecyl sulfate (SDS).[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The alkylsulfatase AtsK from Pseudomonas putida S-313 belongs to the widespread and versatile non-heme iron(II) alpha-ketoglutarate-dependent dioxygenase superfamily and catalyzes the oxygenolytic cleavage of a variety of different alkyl sulfate esters to the corresponding aldehyde and sulfate. The enzyme is only expressed under sulfur starvation conditions, providing a selective advantage for bacterial growth in soils and rhizosphere. Here we describe the crystal structure of AtsK in the apo form and in three complexes: with the cosubstrate alpha-ketoglutarate, with alpha-ketoglutarate and iron, and finally with alpha-ketoglutarate, iron, and an alkyl sulfate ester used as substrate in catalytic studies. The overall fold of the enzyme is closely related to that of the taurine/alpha-ketoglutarate dioxygenase TauD and is similar to the fold observed for other members of the enzyme superfamily. From comparison of these structures with the crystal structure of AtsK and its complexes, we propose a general mechanism for the catalytic cycle of the alpha-ketoglutarate-dependent dioxygenase superfamily.

Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) alpha-ketoglutarate-dependent dioxygenase superfamily.,Muller I, Kahnert A, Pape T, Sheldrick GM, Meyer-Klaucke W, Dierks T, Kertesz M, Uson I Biochemistry. 2004 Mar 23;43(11):3075-88. PMID:15023059[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kahnert A, Kertesz MA. Characterization of a sulfur-regulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J Biol Chem. 2000 Oct 13;275(41):31661-7. PMID:10913158 doi:http://dx.doi.org/10.1074/jbc.M005820200
  2. Muller I, Kahnert A, Pape T, Sheldrick GM, Meyer-Klaucke W, Dierks T, Kertesz M, Uson I. Crystal structure of the alkylsulfatase AtsK: insights into the catalytic mechanism of the Fe(II) alpha-ketoglutarate-dependent dioxygenase superfamily. Biochemistry. 2004 Mar 23;43(11):3075-88. PMID:15023059 doi:http://dx.doi.org/10.1021/bi035752v

1oii, resolution 2.19Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA