Solution Structure of a Circular-Permuted Variant of the Potent HIV-inactivating Protein Cyanovirin-NSolution Structure of a Circular-Permuted Variant of the Potent HIV-inactivating Protein Cyanovirin-N

Structural highlights

1n02 is a 1 chain structure with sequence from Nostoc ellipsosporum. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 26 models
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CVN_NOSEL Mannose-binding lectin.[1] [2]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The high-resolution solution structure of a monomeric circular permuted (cp) variant of the potent HIV-inactivating protein cyanovirin-N (CV-N) was determined by NMR. Comparison with the wild-type (wt) structure revealed that the observed loss in stability of cpCV-N compared to the wt protein is due to less favorable packing of several residues at the pseudo twofold axis that are responsible for holding the two halves of the molecule together. In particular, the N and C-terminal amino acid residues exhibit conformational flexibility, resulting in fewer and less favorable contacts between them. The important hydrophobic and hydrogen-bonding network between residues W49, D89, H90, Y100 and E101 that was observed in wt CV-N is no longer present. For instance, Y100 and E101 are flexible and the tryptophan side-chain is in a different conformation compared to the wt protein. The stability loss amounts to approximately 2kcal/mol and the mobility of the protein is evident by fast amide proton exchange throughout the chain. Mutation of the single proline residue to glycine (P52G) did not substantially affect the stability of the protein, in contrast to the finding for wtCV-N. The binding of high-mannose type oligosaccharides to cpCV-N was also investigated. Similar to wtCV-N, two carbohydrate-binding sites were identified on the protein and the Man alpha1-->2Man linked moieties on the sugar were delineated as binding epitopes. Unlike in wtCV-N, the binding sites on cpCV-N are structurally similar and exhibit comparable binding affinities for the respective sugars. On the basis of the studies presented here and previous results on high-mannose binding to wtCV-N, we discuss a model for the interaction between gp120 and CV-N.

Solution structure of a circular-permuted variant of the potent HIV-inactivating protein cyanovirin-N: structural basis for protein stability and oligosaccharide interaction.,Barrientos LG, Louis JM, Ratner DM, Seeberger PH, Gronenborn AM J Mol Biol. 2003 Jan 3;325(1):211-23. PMID:12473463[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O'Keefe BR, Mori T, Gulakowski RJ, Wu L, Rivera MI, Laurencot CM, Currens MJ, Cardellina JH 2nd, Buckheit RW Jr, Nara PL, Pannell LK, Sowder RC 2nd, Henderson LE. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother. 1997 Jul;41(7):1521-30. PMID:9210678
  2. Botos I, Wlodawer A. Cyanovirin-N: a sugar-binding antiviral protein with a new twist. Cell Mol Life Sci. 2003 Feb;60(2):277-87. PMID:12678493
  3. Barrientos LG, Louis JM, Ratner DM, Seeberger PH, Gronenborn AM. Solution structure of a circular-permuted variant of the potent HIV-inactivating protein cyanovirin-N: structural basis for protein stability and oligosaccharide interaction. J Mol Biol. 2003 Jan 3;325(1):211-23. PMID:12473463
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA