Crystal Structure Of AmpC beta-Lactamase From E. Coli In Complex With AmoxicillinCrystal Structure Of AmpC beta-Lactamase From E. Coli In Complex With Amoxicillin

Structural highlights

1ll9 is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.87Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AMPC_ECOLI This protein is a serine beta-lactamase with a substrate specificity for cephalosporins.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

beta-lactamases confer resistance to beta-lactam antibiotics such as penicillins and cephalosporins. However, beta-lactams that form an acyl-intermediate with the enzyme but subsequently are hindered from forming a catalytically competent conformation seem to be inhibitors of beta-lactamases. This inhibition may be imparted by specific groups on the ubiquitous R(1) side chain of beta-lactams, such as the 2-amino-4-thiazolyl methoxyimino (ATMO) group common among third-generation cephalosporins. Using steric hindrance of deacylation as a design guide, penicillin and carbacephem substrates were converted into effective beta-lactamase inhibitors and antiresistance antibiotics. To investigate the structural bases of inhibition, the crystal structures of the acyl-adducts of the penicillin substrate amoxicillin and the new analogous inhibitor ATMO-penicillin were determined. ATMO-penicillin binds in a catalytically incompetent conformation resembling that adopted by third-generation cephalosporins, demonstrating the transferability of such sterically hindered groups in inhibitor design.

Using steric hindrance to design new inhibitors of class C beta-lactamases.,Trehan I, Morandi F, Blaszczak LC, Shoichet BK Chem Biol. 2002 Sep;9(9):971-80. PMID:12323371[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Trehan I, Morandi F, Blaszczak LC, Shoichet BK. Using steric hindrance to design new inhibitors of class C beta-lactamases. Chem Biol. 2002 Sep;9(9):971-80. PMID:12323371

1ll9, resolution 1.87Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA