1l5t
Crystal Structure of a Domain-Opened Mutant (R121D) of the Human Lactoferrin N-lobe Refined From a Merohedrally-Twinned Crystal Form.Crystal Structure of a Domain-Opened Mutant (R121D) of the Human Lactoferrin N-lobe Refined From a Merohedrally-Twinned Crystal Form.
Structural highlights
FunctionTRFL_HUMAN Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate.[1] [2] Lactotransferrin has antimicrobial activity which depends on the extracellular cation concentration.[3] [4] Lactoferroxins A, B and C have opioid antagonist activity. Lactoferroxin A shows preference for mu-receptors, while lactoferroxin B and C have somewhat higher degrees of preference for kappa-receptors than for mu-receptors.[5] [6] The lactotransferrin transferrin-like domain 1 functions as a serine protease of the peptidase S60 family that cuts arginine rich regions. This function contributes to the antimicrobial activity.[7] [8] Isoform DeltaLf: transcription factor with antiproliferative properties and inducing cell cycle arrest. Binds to DeltaLf response element found in the SKP1, BAX, DCPS, and SELH promoters.[9] [10] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman lactoferrin is an iron-binding protein with a bilobal structure. Each lobe contains a high-affinity binding site for a single Fe(3+) ion and an associated CO(3)(2-) ion. Although iron binds very tightly, it can be released at low pH, with an accompanying conformational change in which the two domains move apart. The Arg121Asp (R121D) mutant of the N-lobe half-molecule of human lactoferrin was constructed in order to test whether the Asp121 side chain could substitute for the CO(3)(2-) ion at the iron-binding site. The R121D mutant protein was crystallized in its apo form as it lost iron during crystallization. The crystals were also merohedrally twinned, with a twin fraction close to 0.5. Starting from the initial molecular-replacement solution [Breyer et al. (1999), Acta Cryst. D55, 129-138], the structure has been refined at 3.0 A resolution to an R factor of 13.9% (R(free) of 19.9%). Despite the moderate resolution, the high solvent content and non-crystallographic symmetry contributed to electron-density maps of excellent quality. Weakened iron binding by the R121D mutant is explained by occlusion of the anion-binding site by the Asp side chain. The opening of the two domains in the apoR121D structure (a rotation of 54 degrees ) closely matches that of the N-lobe in full-length lactoferrin, showing that the extent of the conformational change depends on properties inherent to the N-lobe. Differences in the C-terminal portion of the N-lobe (residues 321-332) for apoR121D relative to the closed wild-type iron-bound structure point to the importance of this region in stabilizing the open form. Structure of a domain-opened mutant (R121D) of the human lactoferrin N-lobe refined from a merohedrally twinned crystal form.,Jameson GB, Anderson BF, Breyer WA, Day CL, Tweedie JW, Baker EN Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 Pt 2):955-62. Epub, 2002 May 29. PMID:12037297[11] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|