INTEGRIN EGF-LIKE MODULE 3 FROM THE BETA-2 SUBUNITINTEGRIN EGF-LIKE MODULE 3 FROM THE BETA-2 SUBUNIT
Structural highlights
1l3y is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
ITB2_HUMAN Defects in ITGB2 are the cause of leukocyte adhesion deficiency type 1 (LAD1) [MIM:116920. LAD1 patients have recurrent bacterial infections and their leukocytes are deficient in a wide range of adhesion-dependent functions.[1][2][3][4][5][6][7][8][9][10][11]
Function
ITB2_HUMAN Integrin alpha-L/beta-2 is a receptor for ICAM1, ICAM2, ICAM3 and ICAM4. Integrins alpha-M/beta-2 and alpha-X/beta-2 are receptors for the iC3b fragment of the third complement component and for fibrinogen. Integrin alpha-X/beta-2 recognizes the sequence G-P-R in fibrinogen alpha-chain. Integrin alpha-M/beta-2 recognizes P1 and P2 peptides of fibrinogen gamma chain. Integrin alpha-M/beta-2 is also a receptor for factor X. Integrin alpha-D/beta-2 is a receptor for ICAM3 and VCAM1. Triggers neutrophil transmigration during lung injury through PTK2B/PYK2-mediated activation.[12]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Cysteine-rich repeats in the integrin beta subunit stalk region relay activation signals to the ligand-binding headpiece. The NMR solution structure and disulfide bond connectivity of Cys-rich module-3 of the integrin beta2 subunit reveal a nosecone-shaped variant of the EGF fold, termed an integrin-EGF (I-EGF) domain. Interdomain contacts between I-EGF domains 2 and 3 observed by NMR support a model in which the modules are related by an approximate two-fold screw axis in an extended arrangement. Our findings complement a 3.1 A crystal structure of the extracellular portion of integrin alphaVbeta3, which lacks an atomic model for I-EGF2 and a portion of I-EGF3. The disulfide connectivity of I-EGF3 chemically assigned here differs from the pairings suggested in the alphaVbeta3 structure. Epitopes that become exposed upon integrin activation and residues that restrain activation are defined in beta2 I-EGF domains 2 and 3. Superposition on the alphaVbeta3 structure reveals that they are buried. This observation suggests that the highly bent alphaVbeta3 structure represents the inactive conformation and that release of contacts with I-EGF modules 2 and 3 triggers a switchblade-like opening motion extending the integrin into its active conformation.
Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation.,Beglova N, Blacklow SC, Takagi J, Springer TA Nat Struct Biol. 2002 Apr;9(4):282-7. PMID:11896403[13]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
↑Ohashi Y, Yambe T, Tsuchiya S, Kikuchi H, Konno T. Familial genetic defect in a case of leukocyte adhesion deficiency. Hum Mutat. 1993;2(6):458-67. PMID:7509236 doi:http://dx.doi.org/10.1002/humu.1380020606
↑Nelson C, Rabb H, Arnaout MA. Genetic cause of leukocyte adhesion molecule deficiency. Abnormal splicing and a missense mutation in a conserved region of CD18 impair cell surface expression of beta 2 integrins. J Biol Chem. 1992 Feb 15;267(5):3351-7. PMID:1346613
↑Arnaout MA, Dana N, Gupta SK, Tenen DG, Fathallah DM. Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. J Clin Invest. 1990 Mar;85(3):977-81. PMID:1968911 doi:http://dx.doi.org/10.1172/JCI114529
↑Wardlaw AJ, Hibbs ML, Stacker SA, Springer TA. Distinct mutations in two patients with leukocyte adhesion deficiency and their functional correlates. J Exp Med. 1990 Jul 1;172(1):335-45. PMID:1694220
↑Matsuura S, Kishi F, Tsukahara M, Nunoi H, Matsuda I, Kobayashi K, Kajii T. Leukocyte adhesion deficiency: identification of novel mutations in two Japanese patients with a severe form. Biochem Biophys Res Commun. 1992 May 15;184(3):1460-7. PMID:1590804
↑Corbi AL, Vara A, Ursa A, Garcia Rodriguez MC, Fontan G, Sanchez-Madrid F. Molecular basis for a severe case of leukocyte adhesion deficiency. Eur J Immunol. 1992 Jul;22(7):1877-81. PMID:1352501 doi:http://dx.doi.org/10.1002/eji.1830220730
↑Back AL, Kwok WW, Hickstein DD. Identification of two molecular defects in a child with leukocyte adherence deficiency. J Biol Chem. 1992 Mar 15;267(8):5482-7. PMID:1347532
↑Back AL, Kerkering M, Baker D, Bauer TR, Embree LJ, Hickstein DD. A point mutation associated with leukocyte adhesion deficiency type 1 of moderate severity. Biochem Biophys Res Commun. 1993 Jun 30;193(3):912-8. PMID:7686755 doi:http://dx.doi.org/10.1006/bbrc.1993.1712
↑Hogg N, Stewart MP, Scarth SL, Newton R, Shaw JM, Law SK, Klein N. A novel leukocyte adhesion deficiency caused by expressed but nonfunctional beta2 integrins Mac-1 and LFA-1. J Clin Invest. 1999 Jan;103(1):97-106. PMID:9884339 doi:10.1172/JCI3312
↑Li L, Jin YY, Cao RM, Chen TX. A novel point mutation in CD18 causing leukocyte adhesion deficiency in a Chinese patient. Chin Med J (Engl). 2010 May 20;123(10):1278-82. PMID:20529581
↑Parvaneh N, Mamishi S, Rezaei A, Rezaei N, Tamizifar B, Parvaneh L, Sherkat R, Ghalehbaghi B, Kashef S, Chavoshzadeh Z, Isaeian A, Ashrafi F, Aghamohammadi A. Characterization of 11 new cases of leukocyte adhesion deficiency type 1 with seven novel mutations in the ITGB2 gene. J Clin Immunol. 2010 Sep;30(5):756-60. doi: 10.1007/s10875-010-9433-2. Epub 2010 , Jun 12. PMID:20549317 doi:10.1007/s10875-010-9433-2
↑Xu J, Gao XP, Ramchandran R, Zhao YY, Vogel SM, Malik AB. Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating beta2 integrins. Nat Immunol. 2008 Aug;9(8):880-6. doi: 10.1038/ni.1628. Epub 2008 Jun 29. PMID:18587400 doi:10.1038/ni.1628
↑Beglova N, Blacklow SC, Takagi J, Springer TA. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat Struct Biol. 2002 Apr;9(4):282-7. PMID:11896403 doi:10.1038/nsb779