Solution Structure of a Phage-Derived Peptide Antagonist in Complex with Vascular Endothelial Growth FactorSolution Structure of a Phage-Derived Peptide Antagonist in Complex with Vascular Endothelial Growth Factor

Structural highlights

1kat is a 4 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 24 models
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

VEGFA_HUMAN Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:603933. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.

Function

VEGFA_HUMAN Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Vascular endothelial growth factor (VEGF) is a potent endothelial cell-specific mediator of angiogenesis and vasculogenesis. VEGF is involved pathologically in cancer, proliferative retinopathy and rheumatoid arthritis, and as such represents an important therapeutic target. Three classes of disulfide-constrained peptides that antagonize binding of the VEGF dimer to its receptors, KDR and Flt-1, were identified previously using phage display methods. NMR studies of a representative peptide from the most potent class of these peptide antagonists, v107 (GGNECDAIRMWEWECFERL), were undertaken to characterize its interactions with VEGF. v107 has no defined structure free in solution, but binding to VEGF induces folding of the peptide. The solution structure of the VEGF receptor-binding domain-v107 complex was determined using 3940 (1970 per VEGF monomer) internuclear distance and 476 (238 per VEGF monomer) dihedral angle restraints derived from NMR data obtained using samples containing either (13)C/(15)N-labeled protein plus excess unlabeled peptide or (13)C/(15)N-labeled peptide plus excess unlabeled protein. Residual dipolar coupling restraints supplemented the structure determination of the complex and were found to increase significantly both the global precision of VEGF in the complex and the agreement with available crystal structures of VEGF. The calculated ensemble of structures is of high precision and is in excellent agreement with the experimental restraints. v107 has a turn-helix conformation with hydrophobic residues partitioned to one face of the peptide and polar or charged residues at the other face. Contacts between two v107 peptides and the VEGF dimer are mediated by primarily hydrophobic side-chain interactions. The v107-binding site on VEGF overlaps partially with the binding site of KDR and is similar to that for domain 2 of Flt-1. The structure of the VEGF-v107 complex provides new insight into how binding to VEGF can be achieved that may be useful for the design of small molecule antagonists.

Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor.,Pan B, Li B, Russell SJ, Tom JY, Cochran AG, Fairbrother WJ J Mol Biol. 2002 Feb 22;316(3):769-87. PMID:11866530[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Murphy JF, Fitzgerald DJ. Vascular endothelial growth factor induces cyclooxygenase-dependent proliferation of endothelial cells via the VEGF-2 receptor. FASEB J. 2001 Jul;15(9):1667-9. PMID:11427521
  2. Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004 Nov 1;64(21):7822-35. PMID:15520188 doi:10.1158/0008-5472.CAN-04-0934
  3. Dixelius J, Olsson AK, Thulin A, Lee C, Johansson I, Claesson-Welsh L. Minimal active domain and mechanism of action of the angiogenesis inhibitor histidine-rich glycoprotein. Cancer Res. 2006 Feb 15;66(4):2089-97. PMID:16489009 doi:10.1158/0008-5472.CAN-05-2217
  4. Pan B, Li B, Russell SJ, Tom JY, Cochran AG, Fairbrother WJ. Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor. J Mol Biol. 2002 Feb 22;316(3):769-87. PMID:11866530 doi:10.1006/jmbi.2001.5370
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA