Pseudomonas aeruginosa Reduced Azurin (Cu1+) Ru(tpy)(phen)(His83)Pseudomonas aeruginosa Reduced Azurin (Cu1+) Ru(tpy)(phen)(His83)

Structural highlights

1jzg is a 1 chain structure with sequence from Pseudomonas aeruginosa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.4Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AZUR_PSEAE Transfers electrons from cytochrome c551 to cytochrome oxidase.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Rates of reduction of Os(III), Ru(III), and Re(I) by Cu(I) in His83-modified Pseudomonas aeruginosa azurins (M-Cu distance approximately 17 A) have been measured in single crystals, where protein conformation and surface solvation are precisely defined by high-resolution X-ray structure determinations: 1.7(8) x 10(6) s(-1) (298 K), 1.8(8) x 10(6) s(-1) (140 K), [Ru(bpy)2(im)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(bpy)(3+)-]; 3.0(15) x 10(6) s(-1) (298 K), [Ru(tpy)(phen)(3+)-]; 9.0(50) x 10(2) s(-1) (298 K), [Os(bpy)2(im)(3+)-]; 4.4(20) x 10(6) s(-1) (298 K), [Re(CO)3(phen)(+)] (bpy = 2,2'-bipyridine; im = imidazole; tpy = 2,2':6',2' '-terpyridine; phen = 1,10-phenanthroline). The time constants for electron tunneling in crystals are roughly the same as those measured in solution, indicating very similar protein structures in the two states. High-resolution structures of the oxidized (1.5 A) and reduced (1.4 A) states of Ru(II)(tpy)(phen)(His83)Az establish that very small changes in copper coordination accompany reduction but reveal a shorter axial interaction between copper and the Gly45 peptide carbonyl oxygen [2.6 A for Cu(II)] than had been recognized previously. Although Ru(bpy)2(im)(His83)Az is less solvated in the crystal, the reorganization energy for Cu(I) --> Ru(III) electron transfer falls in the range (0.6-0.8 eV) determined experimentally for the reaction in solution. Our work suggests that outer-sphere protein reorganization is the dominant activation component required for electron tunneling.

Electron tunneling in single crystals of Pseudomonas aeruginosa azurins.,Crane BR, Di Bilio AJ, Winkler JR, Gray HB J Am Chem Soc. 2001 Nov 28;123(47):11623-31. PMID:11716717[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Crane BR, Di Bilio AJ, Winkler JR, Gray HB. Electron tunneling in single crystals of Pseudomonas aeruginosa azurins. J Am Chem Soc. 2001 Nov 28;123(47):11623-31. PMID:11716717

1jzg, resolution 1.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA