Human Thymidylate Synthase Bound to dUMP and LY231514, a Pyrrolo(2,3-d)pyrimidine-based AntifolateHuman Thymidylate Synthase Bound to dUMP and LY231514, a Pyrrolo(2,3-d)pyrimidine-based Antifolate

Structural highlights

1juj is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TYSY_HUMAN Contributes to the de novo mitochondrial thymidylate biosynthesis pathway.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Crystal structures of four pyrrolo(2,3-d)pyrimidine-based antifolate compounds, developed as inhibitors of thymidylate synthase (TS) in a strategy to circumvent drug-resistance, have been determined in complexes with their in vivo target, human thymidylate synthase, and with the structurally best-characterized Escherichia coli enzyme, to resolutions of 2.2-3.0 A. The 2.9 A crystal structure of a complex of human TS with one of the inhibitors, the multi-targeted antifolate LY231514, demonstrates that this compound induces a "closed" enzyme conformation and leads to formation of a covalent bond between enzyme and substrate. This structure is one of the first liganded human TS structures, and its solution was aided by mutation to facilitate crystallization. Structures of three other pyrrolo(2,3-d)pyrimidine-based antifolates in complex with Escherichia coli TS confirm the orientation of this class of inhibitors in the active site. Specific interactions between the polyglutamyl moiety and a positively charged groove on the enzyme surface explain the marked increase in affinity of the pyrrolo(2,3-d)pyrimidine inhibitors once they are polyglutamylated, as mediated in vivo by the cellular enzyme folyl polyglutamate synthetase.

Multi-targeted antifolates aimed at avoiding drug resistance form covalent closed inhibitory complexes with human and Escherichia coli thymidylate synthases.,Sayre PH, Finer-Moore JS, Fritz TA, Biermann D, Gates SB, MacKellar WC, Patel VF, Stroud RM J Mol Biol. 2001 Nov 2;313(4):813-29. PMID:11697906[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Anderson DD, Quintero CM, Stover PJ. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15163-8. doi:, 10.1073/pnas.1103623108. Epub 2011 Aug 26. PMID:21876188 doi:10.1073/pnas.1103623108
  2. Sayre PH, Finer-Moore JS, Fritz TA, Biermann D, Gates SB, MacKellar WC, Patel VF, Stroud RM. Multi-targeted antifolates aimed at avoiding drug resistance form covalent closed inhibitory complexes with human and Escherichia coli thymidylate synthases. J Mol Biol. 2001 Nov 2;313(4):813-29. PMID:11697906 doi:10.1006/jmbi.2001.5074

1juj, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA