1i54
CYTOCHROME C (TUNA) 2FE:1ZN MIXED-METAL PORPHYRINSCYTOCHROME C (TUNA) 2FE:1ZN MIXED-METAL PORPHYRINS
Structural highlights
FunctionCYC_THUAA Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation-reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s(-1) for *Zn-cyt c --> Fe(III)-cyt c; 2000 s(-1) for Fe(II)-cyt c --> Zn-cyt c(+))] over a Zn-Fe distance of 24.1 A closely match those for intraprotein electron tunneling over similar donor-acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein-protein interface. Electron tunneling in protein crystals.,Tezcan FA, Crane BR, Winkler JR, Gray HB Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5002-6. Epub 2001 Apr 10. PMID:11296248[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|