CRYSTAL STRUCTURE OF HUMAN THYMIDYLATE SYNTHASE, TERNARY COMPLEX WITH DUMP AND TOMUDEXCRYSTAL STRUCTURE OF HUMAN THYMIDYLATE SYNTHASE, TERNARY COMPLEX WITH DUMP AND TOMUDEX

Structural highlights

1i00 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TYSY_HUMAN Contributes to the de novo mitochondrial thymidylate biosynthesis pathway.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The crystal structures of a deletion mutant of human thymidylate synthase (TS) and its ternary complex with dUMP and Tomudex have been determined at 2.0 A and 2.5 A resolution, respectively. The mutant TS, which lacks 23 residues near the amino terminus, is as active as the wild-type enzyme. The ternary complex is observed in the open conformation, similar to that of the free enzyme and to that of the ternary complex of rat TS with the same ligands. This is in contrast to Escherichia coli TS, where the ternary complex with Tomudex and dUMP is observed in the closed conformation. While the ligands interact with each other in identical fashion regardless of the enzyme conformation, they are displaced by about 1.0 A away from the catalytic cysteine in the open conformation. As a result, the covalent bond between the catalytic cysteine sulfhydryl and the base of dUMP, which is the first step in the reaction mechanism of TS and is observed in all ternary complexes of the E. coli enzyme, is not formed. This displacement results from differences in the interactions between Tomudex and the protein that are caused by differences in the environment of the glutamyl tail of the Tomudex molecule. Despite the absence of the closed conformation, Tomudex inhibits human TS ten-fold more strongly than E. coli TS. These results suggest that formation of a covalent bond between the catalytic cysteine and the substrate dUMP is not required for effective inhibition of human TS by cofactor analogs and could have implications for drug design by eliminating this as a condition for lead compounds.

Crystal structure of a deletion mutant of human thymidylate synthase Delta (7-29) and its ternary complex with Tomudex and dUMP.,Almog R, Waddling CA, Maley F, Maley GF, Van Roey P Protein Sci. 2001 May;10(5):988-96. PMID:11316879[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Anderson DD, Quintero CM, Stover PJ. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15163-8. doi:, 10.1073/pnas.1103623108. Epub 2011 Aug 26. PMID:21876188 doi:10.1073/pnas.1103623108
  2. Almog R, Waddling CA, Maley F, Maley GF, Van Roey P. Crystal structure of a deletion mutant of human thymidylate synthase Delta (7-29) and its ternary complex with Tomudex and dUMP. Protein Sci. 2001 May;10(5):988-96. PMID:11316879

1i00, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA