FERREDOXIN:NADP+ REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY, ALA 160 REPLACED BY THR AND LEU 263 REPLACED BY PRO (T155G-A160T-L263P)FERREDOXIN:NADP+ REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY, ALA 160 REPLACED BY THR AND LEU 263 REPLACED BY PRO (T155G-A160T-L263P)

Structural highlights

1h42 is a 1 chain structure with sequence from Nostoc sp. PCC 7119. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.15Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FENR_NOSSO

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Previous studies indicated that the determinants of coenzyme specificity in ferredoxin-NADP+ reductase (FNR) from Anabaena are situated in the 2'-phosphate (2'-P) NADP+ binding region, and also suggested that other regions must undergo structural rearrangements of the protein backbone during coenzyme binding. Among the residues involved in such specificity could be those located in regions where interaction with the pyrophosphate group of the coenzyme takes place, namely loops 155-160 and 261-268 in Anabaena FNR. In order to learn more about the coenzyme specificity determinants, and to better define the structural basis of coenzyme binding, mutations in the pyrophosphate and 2'-P binding regions of FNR have been introduced. Modification of the pyrophosphate binding region, involving residues Thr-155, Ala-160, and Leu-263, indicates that this region is involved in determining coenzyme specificity and that selected alterations of these positions produce FNR enzymes that are able to bind NAD+. Thus, our results suggest that slightly different structural rearrangements of the backbone chain in the pyrophosphate binding region might determine FNR specificity for the coenzyme. Combined mutations at the 2'-P binding region, involving residues Ser-223, Arg-224, Arg-233, and Tyr-235, in combination with the residues mentioned above in the pyrophosphate binding region have also been carried out in an attempt to increase the FNR affinity for NAD+/H. However, in most cases the analyzed mutants lost the ability for NADP+/H binding and electron transfer, and no major improvements were observed with regard to the efficiency of the reactions with NAD+/H. Therefore, our results confirm that determinants for coenzyme specificity in FNR are also situated in the pyrophosphate binding region and not only in the 2'-P binding region. Such observations also suggest that other regions of the protein, yet to be identified, might also be involved in this process.

Involvement of the pyrophosphate and the 2'-phosphate binding regions of ferredoxin-NADP+ reductase in coenzyme specificity.,Tejero J, Martinez-Julvez M, Mayoral T, Luquita A, Sanz-Aparicio J, Hermoso JA, Hurley JK, Tollin G, Gomez-Moreno C, Medina M J Biol Chem. 2003 Dec 5;278(49):49203-14. Epub 2003 Sep 18. PMID:14500716[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Tejero J, Martinez-Julvez M, Mayoral T, Luquita A, Sanz-Aparicio J, Hermoso JA, Hurley JK, Tollin G, Gomez-Moreno C, Medina M. Involvement of the pyrophosphate and the 2'-phosphate binding regions of ferredoxin-NADP+ reductase in coenzyme specificity. J Biol Chem. 2003 Dec 5;278(49):49203-14. Epub 2003 Sep 18. PMID:14500716 doi:10.1074/jbc.M307934200

1h42, resolution 2.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA