HIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN REF-1 (RESIDUES 59-71 OF THE P50 SUBUNIT OF NFKB), NMR, MINIMIZED AVERAGE STRUCTUREHIGH RESOLUTION SOLUTION NMR STRUCTURE OF MIXED DISULFIDE INTERMEDIATE BETWEEN HUMAN THIOREDOXIN (C35A, C62A, C69A, C73A) MUTANT AND A 13 RESIDUE PEPTIDE COMPRISING ITS TARGET SITE IN HUMAN REF-1 (RESIDUES 59-71 OF THE P50 SUBUNIT OF NFKB), NMR, MINIMIZED AVERAGE STRUCTURE

Structural highlights

1cqh is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 1 model
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

THIO_HUMAN Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates AP-1 transcriptional activity.[1] [2] [3] [4] [5] ADF augments the expression of the interleukin-2 receptor TAC (IL2R/P55).[6] [7] [8] [9] [10]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Human thioredoxin (hTRX) is a 12 kDa cellular redox protein that has been shown to play an important role in the activation of a number of transcriptional and translational regulators via a thiol-redox mechanism. This activity may be direct or indirect via another redox protein known as Ref-1. The structure of a complex of hTRX with a peptide comprising its target from the transcription factor NF kappa B has previously been solved. To further extend our knowledge of the recognition by and interaction of hTRX with its various targets, we have studied a complex between hTRX and a Ref-1 peptide. This complex represents a kinetically stable mixed disulfide intermediate along the reaction pathway. RESULTS: Using multidimensional heteronuclear edited and filtered NMR spectroscopy, we have solved the solution structure of a complex between hTRX and a 13-residue peptide comprising residues 59-71 of Ref-1. The Ref-1 peptide is located in a crescent-shaped groove on the surface of hTRX, the groove being formed by residues in the active-site loop (residues 32-36), helix 3, beta strands 3 and 5, and the loop between beta strands 3 and 4. The complex is stabilized by numerous hydrogen-bonding and hydrophobic interactions that involve residues 61-69 of the peptide and confer substrate specificity. CONCLUSIONS: The orientation of the Ref-1 peptide in the hTRX-Ref-1 complex is opposite to that found in the previously solved complex of hTRX with the target peptide from the transcription factor NF kappa B. Orientation is determined by three discriminating interactions involving the nature of the residues at the P-2' P-4 and P-5 binding positions. (P0 defines the active cysteine of the peptide, Cys65 for Ref-1 and Cys62 for NF kappa B. Positive and negative numbers indicate residues N-terminal and C-terminal to this residue, respectively, and vice versa for NF kappa B as it binds in the opposite orientation.) The environment surrounding the reactive Cys32 of hTRX, as well as the packing of the P+3 to P-4 residues are essentially the same in the two complexes, despite the opposing orientation of the peptide chains. This versatility in substrate recognition permits hTRX to act as a wide-ranging redox regulator for the cell.

The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal.,Qin J, Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM Structure. 1996 May 15;4(5):613-20. PMID:8736558[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Jacquot JP, de Lamotte F, Fontecave M, Schurmann P, Decottignies P, Miginiac-Maslow M, Wollman E. Human thioredoxin reactivity-structure/function relationship. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1375-81. PMID:2176490
  2. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8. PMID:9108029
  3. Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 2000 Dec 1;60(23):6688-95. PMID:11118054
  4. Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol. 2005 Aug;1(3):154-8. Epub 2005 Jul 10. PMID:16408020 doi:http://dx.doi.org/nchembio720
  5. Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11609-14. Epub 2007 Jul 2. PMID:17606900 doi:http://dx.doi.org/0704898104
  6. Jacquot JP, de Lamotte F, Fontecave M, Schurmann P, Decottignies P, Miginiac-Maslow M, Wollman E. Human thioredoxin reactivity-structure/function relationship. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1375-81. PMID:2176490
  7. Hirota K, Matsui M, Iwata S, Nishiyama A, Mori K, Yodoi J. AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3633-8. PMID:9108029
  8. Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D. Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res. 2000 Dec 1;60(23):6688-95. PMID:11118054
  9. Mitchell DA, Marletta MA. Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol. 2005 Aug;1(3):154-8. Epub 2005 Jul 10. PMID:16408020 doi:http://dx.doi.org/nchembio720
  10. Mitchell DA, Morton SU, Fernhoff NB, Marletta MA. Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11609-14. Epub 2007 Jul 2. PMID:17606900 doi:http://dx.doi.org/0704898104
  11. Qin J, Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Structure. 1996 May 15;4(5):613-20. PMID:8736558
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA