1cbl
THE 1.9 ANGSTROM STRUCTURE OF DEOXY-BETA4 HEMOGLOBIN: ANALYSIS OF THE PARTITIONING OF QUATERNARY-ASSOCIATED AND LIGAND-INDUCED CHANGES IN TERTIARY STRUCTURETHE 1.9 ANGSTROM STRUCTURE OF DEOXY-BETA4 HEMOGLOBIN: ANALYSIS OF THE PARTITIONING OF QUATERNARY-ASSOCIATED AND LIGAND-INDUCED CHANGES IN TERTIARY STRUCTURE
Structural highlights
DiseaseHBB_HUMAN Defects in HBB may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] [2] [3] [4] Defects in HBB are the cause of beta-thalassemia (B-THAL) [MIM:613985. A form of thalassemia. Thalassemias are common monogenic diseases occurring mostly in Mediterranean and Southeast Asian populations. The hallmark of beta-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. Absence of beta chain causes beta(0)-thalassemia, while reduced amounts of detectable beta globin causes beta(+)-thalassemia. In the severe forms of beta-thalassemia, the excess alpha globin chains accumulate in the developing erythroid precursors in the marrow. Their deposition leads to a vast increase in erythroid apoptosis that in turn causes ineffective erythropoiesis and severe microcytic hypochromic anemia. Clinically, beta-thalassemia is divided into thalassemia major which is transfusion dependent, thalassemia intermedia (of intermediate severity), and thalassemia minor that is asymptomatic.[5] Defects in HBB are the cause of sickle cell anemia (SKCA) [MIM:603903; also known as sickle cell disease. Sickle cell anemia is characterized by abnormally shaped red cells resulting in chronic anemia and periodic episodes of pain, serious infections and damage to vital organs. Normal red blood cells are round and flexible and flow easily through blood vessels, but in sickle cell anemia, the abnormal hemoglobin (called Hb S) causes red blood cells to become stiff. They are C-shaped and resembles a sickle. These stiffer red blood cells can led to microvascular occlusion thus cutting off the blood supply to nearby tissues. Defects in HBB are the cause of beta-thalassemia dominant inclusion body type (B-THALIB) [MIM:603902. An autosomal dominant form of beta thalassemia characterized by moderate anemia, lifelong jaundice, cholelithiasis and splenomegaly, marked morphologic changes in the red cells, erythroid hyperplasia of the bone marrow with increased numbers of multinucleate red cell precursors, and the presence of large inclusion bodies in the normoblasts, both in the marrow and in the peripheral blood after splenectomy.[6] FunctionHBB_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues.[7] LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.[8] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe crystal structure of the deoxygenated form of the human hemoglobin beta 4 tetramer (deoxy beta 4) has been determined and refined at a resolution of 1.9 A. A detailed comparison of the quaternary structures of carbonmonoxy-beta 4 (CO beta 4) and deoxy beta 4 shows that ligand binding to the beta 4 tetramer produces only slight movements of the subunits relative to each other. Therefore, unlike the hemoglobin alpha 2 beta 2 tetramer, where the transition from an unliganded T state tetramer to a liganded R state tetramer results in a large change in quaternary structure, beta 4 is locked in a quaternary structure that very closely resembles the R state. By comparing the high-resolution structures of T state deoxy alpha 2 beta 2, R state deoxy beta 4 and R state CO beta 4, it is possible to partition the changes in beta subunit tertiary structure into those that arise from changes in quaternary structure and those that result solely from ligand binding. Specifically, when viewed from the heme reference frame, comparison of the structures of T state deoxy alpha 2 beta 2 and R state deoxy beta 4 shows that the T-to-R quaternary structure transition induces changes in beta subunit tertiary structure that are approximately halfway toward the tertiary structure observed in liganded beta 4 and liganded alpha 2 beta 2. When viewed from the reference frame of the globin backbone atoms, the T-to-R quaternary structure transition induces a small rotation of the heme group and a shift of the "allosteric core" (the end of the F helix, the FG corner, the beginning of the G helix, and the heme group) away from the E helix. These movements open the ligand binding pocket and place the heme in a more symmetric position relative to the proximal histidine residue. Together, these effects work in unison to give the subunits of deoxy beta 4 a tertiary structure that has high ligand affinity. The 1.9 A structure of deoxy beta 4 hemoglobin. Analysis of the partitioning of quaternary-associated and ligand-induced changes in tertiary structure.,Borgstahl GE, Rogers PH, Arnone A J Mol Biol. 1994 Feb 25;236(3):831-43. PMID:8114097[9] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|