1bzz
HEMOGLOBIN (ALPHA V1M) MUTANTHEMOGLOBIN (ALPHA V1M) MUTANT
Structural highlights
DiseaseHBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] FunctionHBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues. Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHuman hemoglobin produced in the Escherichia coli coexpression system of Hernan et al. [(1992) Biochemistry 31, 8619-8628] has been transformed into a functionally homogeneous protein whose properties closely approximate those of normal hemoglobin A. Both of the alpha and beta chains of this hemoglobin contain a valine-methionine substitution at position 1 in order to accommodate the difference in specificity of the protein-processing enzymes of procaryotes. Despite extensive purification, functional homogeneity of the E. coli expressed hemoglobin was achieved only by the complete disassembly of the hemoglobin into its component alpha and beta globins and their reassembly in the presence of hemin. The kinetics of CO combination and the thermodynamics of O2 binding and cooperativity of the reassembled alphaV1M-betaV1M hemoglobin closely approximate those of HbA. The alpha globin obtained from the E. coli expressed hemoglobin was also combined with normal human beta chains and hemin to form the alphaV1M variant. The alpha+M variant of HbA, in which the normal N-terminal valine of the alpha chains is preceded by a methionine residue, was prepared by the same procedure. The kinetics of the reactions of CO with the alphaV1M and alpha+M variants are similar to those for HbA. The equilibria of oxygen binding to alphaV1M and HbA are similar whereas alpha+M exhibits a significantly higher oxygen affinity. The three-dimensional structures of alphaV1M and alpha+M offer an explanation for the latter affinity difference. Although the structures of alphaV1M and HbA, which have been determined by X-ray crystallography, are virtually indistinguishable except at the N-terminal residues, that of alpha+M indicates the displacement of a solvent molecule, possibly a chloride ion, from arginine 141alpha. Such an alteration in an anion binding site could result in increased oxygen affinity. Structural and functional properties of human hemoglobins reassembled after synthesis in Escherichia coli.,Hui HL, Kavanaugh JS, Doyle ML, Wierzba A, Rogers PH, Arnone A, Holt JM, Ackers GK, Noble RW Biochemistry. 1999 Jan 19;38(3):1040-9. PMID:9894000[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|