RICIN A CHAIN (RECOMBINANT) COMPLEX WITH NEOPTERINRICIN A CHAIN (RECOMBINANT) COMPLEX WITH NEOPTERIN

Structural highlights

1br5 is a 1 chain structure with sequence from Ricinus communis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RICI_RICCO Ricin is highly toxic to animal cells and to a lesser extent to plant cells. The A chain acts as a glycosidase that removes a specific adenine residue from an exposed loop of the 28S rRNA (A4324 in mammals), leading to rRNA breakage. As this loop is involved in elongation factor binding, modified ribosomes are catalytically inactive and unable to support protein synthesis. The A chain can inactivate a few thousand ribosomes per minute, faster than the cell can make new ones. Therefore a single A chain molecule can kill an animal cell. The B chain binds to beta-D-galactopyranoside moieties on cell surface glycoproteins and glycolipids and facilitates the entry into the cell of the A chain; B chains are also responsible for cell agglutination (Lectin activity).

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ricin is a potent cytotoxin which has been used widely in the construction of therapeutic agents such as immunotoxins. Recently it has been used by governments and underground groups as a poison. There is interest in identifying and designing effective inhibitors of the ricin A chain (RTA). In this study computer-assisted searches indicated that pterins might bind in the RTA active site which normally recognizes a specific adenine base on rRNA. Kinetic assays showed that pteroic acid could inhibit RTA activity with an apparent Ki of 0.6 mM. A 2.3 A crystal structure of the complex revealed the mode of binding. The pterin ring displaces Tyr80 and binds in the adenine pocket making specific hydrogen bonds to active site residues. The benzoate moiety of pteroic acid binds on the opposite side of Tyr80 making van der Waals contact with the Tyr ring and forming a hydrogen bond with Asn78. Neopterin, a propane triol derivative of pterin, also binds to RTA as revealed by the X-ray structure of its complex with RTA. Neither pterin-6-carboxylic acid nor folic acid bind to the crystal or act as inhibitors. The models observed suggest alterations to the pterin moiety which may produce more potent and specific RTA inhibitors.

Structure-based identification of a ricin inhibitor.,Yan X, Hollis T, Svinth M, Day P, Monzingo AF, Milne GW, Robertus JD J Mol Biol. 1997 Mar 14;266(5):1043-9. PMID:9086280[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yan X, Hollis T, Svinth M, Day P, Monzingo AF, Milne GW, Robertus JD. Structure-based identification of a ricin inhibitor. J Mol Biol. 1997 Mar 14;266(5):1043-9. PMID:9086280 doi:10.1006/jmbi.1996.0865

1br5, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA