EBNA-1 NUCLEAR PROTEIN/DNA COMPLEXEBNA-1 NUCLEAR PROTEIN/DNA COMPLEX

Structural highlights

1b3t is a 4 chain structure with sequence from Human gammaherpesvirus 4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

EBNA1_EBVB9 Plays an essential role in replication and partitioning of viral genomic DNA during latent viral infection. During this phase, the circular double-stranded viral DNA undergoes replication once per cell cycle and is efficiently partitioned to the daughter cells. EBNA1 activates the initiation of viral DNA replication through binding to specific sites in the viral latent origin of replication, oriP. Additionally, it governs the segregation of viral episomes by mediating their attachment to host cell metaphase chromosomes. Also activates the transcription of several viral latency genes. Finally, it can counteract the stabilization of host p53/TP53 by host USP7, thereby decreasing apoptosis and increasing host cell survival.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Epstein-Barr nuclear antigen 1 (EBNA1) binds to four recognition sites in the minimal origin of latent DNA replication of Epstein-Barr virus and activates latent-phase replication of the viral genomes. Two of these EBNA1 binding sites become sensitive to permanganate oxidation when bound by the DNA binding and dimerization domains of EBNA1. We have previously solved the co-crystal structure of this EBNA1 fragment bound to a consensus recognition site that is not sensitive to permanganate oxidation (CS). To understand the structural difference that underlies the permanganate sensitivity of EBNA1 binding sites, we have now solved the crystal structure of the EBNA1 DNA-binding and dimerization domains bound to a permanganate-sensitive site (CSA/T). Comparisons of permanganate-sensitive and insensitive EBNA1-DNA complexes have revealed only minor differences in protein and DNA structures. In the EBNA1-CSA/T structure, interstrand H-bonds for three consecutive base-pairs centered over the permanganate-sensitive thymine base are lengthened relative to the corresponding bonds in the EBNA1-CS complex, and three potential intrastrand H-bonds were observed between adjacent bases. We also observed that both the CS and CSA/T sequences are overwound by EBNA1 in the vicinity of the permanganate-sensitive thymine base. Finally, we show that the permanganate-sensitive thymine base in the CSA/T-EBNA1 complex is more accessible to solvent than the corresponding T in the EBNA-CS complex.

The 2.2 A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1.,Bochkarev A, Bochkareva E, Frappier L, Edwards AM J Mol Biol. 1998 Dec 18;284(5):1273-8. PMID:9878348[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Saridakis V, Sheng Y, Sarkari F, Holowaty MN, Shire K, Nguyen T, Zhang RG, Liao J, Lee W, Edwards AM, Arrowsmith CH, Frappier L. Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell. 2005 Apr 1;18(1):25-36. PMID:15808506 doi:10.1016/j.molcel.2005.02.029
  2. Bochkarev A, Bochkareva E, Frappier L, Edwards AM. The 2.2 A structure of a permanganate-sensitive DNA site bound by the Epstein-Barr virus origin binding protein, EBNA1. J Mol Biol. 1998 Dec 18;284(5):1273-8. PMID:9878348 doi:10.1006/jmbi.1998.2247

1b3t, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA