REGULATORY DOMAIN OF HUMAN CARDIAC TROPONIN C IN THE CALCIUM-SATURATED STATE, NMR, 40 STRUCTURESREGULATORY DOMAIN OF HUMAN CARDIAC TROPONIN C IN THE CALCIUM-SATURATED STATE, NMR, 40 STRUCTURES

Structural highlights

1ap4 is a 1 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TNNC1_HUMAN Defects in TNNC1 are the cause of cardiomyopathy dilated type 1Z (CMD1Z) [MIM:611879. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature death.[1] Defects in TNNC1 are the cause of familial hypertrophic cardiomyopathy type 13 (CMH13) [MIM:613243. A hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intrafamilial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death.[2] [3] [4] [5]

Function

TNNC1_HUMAN Troponin is the central regulatory protein of striated muscle contraction. Tn consists of three components: Tn-I which is the inhibitor of actomyosin ATPase, Tn-T which contains the binding site for tropomyosin and Tn-C. The binding of calcium to Tn-C abolishes the inhibitory action of Tn on actin filaments.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

While calcium binding to troponin C (TnC) triggers the contraction of both skeletal and cardiac muscle, there is clear evidence that different mechanisms may be involved. For example, activation of heart myofilaments occurs with binding to a single regulatory site on TnC, whereas activation of fast skeletal myofilaments occurs with binding to two regulatory sites. The physiological difference between activation of cardiac and skeletal myofilaments is not understood at the molecular level due to a lack of structural details for the response of cardiac TnC to calcium. We determined the solution structures of the apo and calcium-saturated regulatory domain of human cardiac TnC by using multinuclear, multidimensional nuclear magnetic resonance spectroscopy. The structure of apo human cardiac TnC is very similar to that of apo turkey skeletal TnC even though there are critical amino acid substitutions in site I. In contrast to the case with the skeletal protein, the calcium-induced conformational transition in the cardiac regulatory domain does not involve an "opening" of the regulatory domain, and the concomitant exposure of a substantial hydrophobic surface area. This result has important implications with regard to potential unique aspects of the interaction of cardiac TnC with cardiac troponin I and of modification of cardiac myofilament regulation by calcium-sensitizer drugs.

Calcium-induced structural transition in the regulatory domain of human cardiac troponin C.,Spyracopoulos L, Li MX, Sia SK, Gagne SM, Chandra M, Solaro RJ, Sykes BD Biochemistry. 1997 Oct 7;36(40):12138-46. PMID:9315850[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Mogensen J, Murphy RT, Shaw T, Bahl A, Redwood C, Watkins H, Burke M, Elliott PM, McKenna WJ. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2004 Nov 16;44(10):2033-40. PMID:15542288 doi:S0735-1097(04)01700-0
  2. Hoffmann B, Schmidt-Traub H, Perrot A, Osterziel KJ, Gessner R. First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum Mutat. 2001 Jun;17(6):524. PMID:11385718 doi:10.1002/humu.1143
  3. Schmidtmann A, Lindow C, Villard S, Heuser A, Mugge A, Gessner R, Granier C, Jaquet K. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. FEBS J. 2005 Dec;272(23):6087-97. PMID:16302972 doi:10.1111/j.1742-4658.2005.05001.x
  4. Landstrom AP, Parvatiyar MS, Pinto JR, Marquardt ML, Bos JM, Tester DJ, Ommen SR, Potter JD, Ackerman MJ. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J Mol Cell Cardiol. 2008 Aug;45(2):281-8. doi: 10.1016/j.yjmcc.2008.05.003. Epub , 2008 May 11. PMID:18572189 doi:10.1016/j.yjmcc.2008.05.003
  5. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Ackerman MJ, Potter JD. A functional and structural study of troponin C mutations related to hypertrophic cardiomyopathy. J Biol Chem. 2009 Jul 10;284(28):19090-100. doi: 10.1074/jbc.M109.007021. Epub, 2009 May 12. PMID:19439414 doi:10.1074/jbc.M109.007021
  6. Spyracopoulos L, Li MX, Sia SK, Gagne SM, Chandra M, Solaro RJ, Sykes BD. Calcium-induced structural transition in the regulatory domain of human cardiac troponin C. Biochemistry. 1997 Oct 7;36(40):12138-46. PMID:9315850 doi:10.1021/bi971223d
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA