RECOMBINANT RAT LIVER 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE (3-ALPHA-HSD) COMPLEXED WITH NADP AND TESTOSTERONERECOMBINANT RAT LIVER 3-ALPHA-HYDROXYSTEROID DEHYDROGENASE (3-ALPHA-HSD) COMPLEXED WITH NADP AND TESTOSTERONE

Structural highlights

1afs is a 2 chain structure with sequence from Rattus norvegicus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DIDH_RAT Besides being a 3-alpha-hydroxysteroid dehydrogenase, the enzyme can accomplish diverse functions: as quinone reductase, as an aromatic alcohol dehydrogenase, as dihydrodiol dehydrogenase, and as 9-, 11-, and 15-hydroxyprostaglandin dehydrogenase.

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Mammalian 3 alpha-hydroxysteroid dehydrogenases (3 alpha-HSDs) modulate the activities of steroid hormones by reversibly reducing their C3 ketone groups. In steroid target tissues, 3 alpha-HSDs act on 5 alpha-dihydrotestosterone, a potent male sex hormone (androgen) implicated in benign prostate hyperplasia and prostate cancer. Rat liver 3 alpha-HSD belongs to the aldo-keto reductase (AKR) superfamily and provides a model for mammalian 3 alpha-, 17 beta- and 20 alpha-HSDs, which share > 65% sequence identity. The determination of the structure of 3 alpha-HSD in complex with NADP+ and testosterone (a competitive inhibitor) will help to further our understanding of steroid recognition and hormone regulation by mammalian HSDs. RESULTS: We have determined the 2.5 A resolution crystal structure of recombinant rat liver 3 alpha-HSD complexed with NADP+ and testosterone. The structure provides the first picture of an HSD ternary complex in the AKR superfamily, and is the only structure to date of testosterone bound to a protein. It reveals that the C3 ketone in testosterone, corresponding to the reactive group in a substrate, is poised above the nicotinamide ring which is involved in hydride transfer. In addition, the C3 ketone forms hydrogen bonds with two active-site residues implicated in catalysis (Tyr55 and His117). CONCLUSIONS: The active-site arrangement observed in the 3 alpha-HSD ternary complex structure suggests that each positional-specific and stereospecific reaction catalyzed by an HSD requires a particular substrate orientation, the general features of which can be predicted. 3 alpha-HSDs are likely to bind substrates in a similar manner to the way in which testosterone is bound in the ternary complex, that is with the A ring of the steroid substrate in the active site and the beta face towards the nicotinamide ring to facilitate hydride transfer. In contrast, we predict that 17 beta-HSDs will bind substrates with the D ring of the steroid in the active site and with the alpha face towards the nicotinamide ring. The ability to bind substrates in only one or a few orientations could determine the positional-specificity and stereospecificity of each HSD. Residues lining the steroid-binding cavities are highly variable and may select these different orientations.

Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase.,Bennett MJ, Albert RH, Jez JM, Ma H, Penning TM, Lewis M Structure. 1997 Jun 15;5(6):799-812. PMID:9261071[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Bennett MJ, Albert RH, Jez JM, Ma H, Penning TM, Lewis M. Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Structure. 1997 Jun 15;5(6):799-812. PMID:9261071

1afs, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA