CONSERVATION OF SOLVENT-BINDING SITES IN 10 CRYSTAL FORMS OF T4 LYSOZYMECONSERVATION OF SOLVENT-BINDING SITES IN 10 CRYSTAL FORMS OF T4 LYSOZYME

Structural highlights

152l is a 1 chain structure with sequence from Escherichia virus T4. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Solvent-binding sites were compared in 10 different crystal forms of phage T4 lysozyme that were refined using data from 2.6 A to 1.7 A resolution. The sample included 18 crystallographically independent lysozyme molecules. Despite different crystallization conditions, variable crystal contacts, changes due to mutation, and varying attention to solvent during crystallographic refinement, 62% of the 20 most frequently occupied sites were conserved. Allowing for potential steric interference from neighboring molecules in the crystal lattice, this fraction increased to 79% of the sites. There was, however, no solvent-binding site that was occupied in all 18 lysozyme molecules. A buried double site was occupied in 17 instances and 2 other internal sites were occupied 15 times. Apart from these buried sites, the most frequently occupied sites were often at the amino-termini of alpha-helices. Solvent molecules at the most conserved sites tended to have crystallographic thermal factors lower than average, but atoms with low B-factors were not restricted to these sites. Although superficial inspection may suggest that only 50-60% (or less) of solvent-binding sites are conserved in different crystal forms of a protein, it appears that many sites appear to be empty either because of steric interference or because the apparent occupancy of a given site can vary from crystal to crystal. The X-ray method of identifying sites is somewhat subjective and tends to result in specification only of those solvent molecules that are well ordered and bound with high occupancy, even though there is clear evidence for solvent bound at many additional sites.(ABSTRACT TRUNCATED AT 250 WORDS)

Conservation of solvent-binding sites in 10 crystal forms of T4 lysozyme.,Zhang XJ, Matthews BW Protein Sci. 1994 Jul;3(7):1031-9. PMID:7920248[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
  2. Zhang XJ, Matthews BW. Conservation of solvent-binding sites in 10 crystal forms of T4 lysozyme. Protein Sci. 1994 Jul;3(7):1031-9. PMID:7920248 doi:http://dx.doi.org/10.1002/pro.5560030705

152l, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA